Search results
1 – 4 of 4Devarshi Kapil, Rakesh Raut, Kirti Nayal, Mukesh Kumar and Milind M. Akarte
The study aims to provide a comprehensive review of digital twin (DT) literature and examine how various industrial sectors utilize the potential of DT.
Abstract
Purpose
The study aims to provide a comprehensive review of digital twin (DT) literature and examine how various industrial sectors utilize the potential of DT.
Design/methodology/approach
This study’s systematic literature review (SLR) and bibliometric analysis focus on utilizing DT in the supply chain (SC) and its applications across various industries between 2017 and 2024. The use of DT for information management and risk management in SCM, which have been investigated in many sectors, is the primary focus of this article. The article also examines the various digital technologies used in digital twin literature.
Findings
The following are the main conclusions drawn from the research on digital twins and their implementation: Digital twins have been studied to improve visibility, traceability, resilience, risk identification and assessment, information sharing and decision-making in SC of various sectors. According to the literature review, most research was conducted in the manufacturing industry. Also, the integration of DT with digital technologies (like AI, BD, AI, ML and CPS) in SC has been explored less.
Originality/value
A multisectoral examination has been done to identify any needs or requirements and unknown areas of study and make recommendations for future directions for study on the interface between SC and DT.
Details
Keywords
Shreyanshu Parhi, Shashank Kumar, Kanchan Joshi, Milind Akarte, Rakesh D. Raut and Balkrishna Eknath Narkhede
The advent of Internet of Things, cloud computing and advanced computing has endowed smart manufacturing environments with resilience, reconfigurability and intelligence…
Abstract
Purpose
The advent of Internet of Things, cloud computing and advanced computing has endowed smart manufacturing environments with resilience, reconfigurability and intelligence, resulting in the emergence of novel capabilities. These capabilities have significantly reshaped the manufacturing ecosystem, enabling it to effectively navigate uncertainties. The purpose of this study is to assess the operational transformations resulting from the implementation of smart manufacturing, which distinguish it from conventional systems.
Design/methodology/approach
A list of qualitative and quantitative smart manufacturing performance metrics (SMPMs) are initially suggested and categorized into strategic, tactical and operational levels. The SMPMs resemble the capabilities of smart manufacturing systems to manage disruptions due to uncertainties. Then, industry and academia experts validate the SMPMs through the utilization of the Delphi method, enabling the ranking of the SMPMs.
Findings
The proposition of the SMPMs serves as a metric to assess the digital transformation capabilities of smart manufacturing systems. In addition, the ranking of the proposed SMPMs shows a degree of relevance of the measures in smart manufacturing deployment and managing the disruptions caused due to the COVID-19 pandemic
Research limitations/implications
The findings benefit managers, consultants, policymakers and researchers in making appropriate decisions for deploying and operationalizing smart manufacturing systems by focusing on critical SMPMs.
Originality/value
The research provides a metric to assess the operational transformations during the deployment of smart manufacturing systems. Also, it states the role of the metric in managing the potential disruptions that can alter the performance of the business due to the COVID-19 pandemic.
Details
Keywords
Mahadev Laxman Naik and Milind Shrikant Kirkire
Asset maintenance in manufacturing industries is a critical issue as organizations are highly sensitive towards maximizing asset uptime. In the advent of Industry 4.0, maintenance…
Abstract
Purpose
Asset maintenance in manufacturing industries is a critical issue as organizations are highly sensitive towards maximizing asset uptime. In the advent of Industry 4.0, maintenance is increasingly becoming technology driven and is being termed as Maintenance 4.0. Several barriers impede the implementation of Maintenance 4.0. This article aims at - exploring the barriers to implementation of Maintenance 4.0 in manufacturing industries, categorizing them, analysing them to prioritize and suggesting the digital technologies to overcome them.
Design/methodology/approach
Twenty barriers to the implementation of Maintenance 4.0 were identified through literature survey and discussion with the industry experts. The identified barriers were divided into five categories based on their source of occurrence and prioritized using fuzzy-technique for order preference by similarity to ideal solution (TOPSIS), sensitivity analysis was carried out to check the robustness of the solution.
Findings
“Data security issues” has been ranked as the most influencing barrier towards the implementation of Maintenance 4.0, whereas “lack of skilled engineers and data scientists” is the least influencing barrier that impacts the implementation of Maintenance 4.0 in the manufacwturing industries.
Practical implications
The outcomes of this research will help manufacturing industries, maintenance engineers/managers, policymakers, and industry professionals for detailed understanding of barriers and identify easy pickings while implementing Maintenance 4.0.
Originality/value
Manufacturing industries are witnessing a paradigm shift due to digitization and maintenance 4.0 forms the cornerstone. Little research has been carried in Maintenance 4.0 and its implementation; this article will help in bridging the gap. The prioritization of the barriers and digital course of actions to overcome those is a unique contribution of this article.
Details
Keywords
Yogesh Patil, Milind Akarte, K. P. Karunakaran, Ashik Kumar Patel, Yash G. Mittal, Gopal Dnyanba Gote, Avinash Kumar Mehta, Ronald Ely and Jitendra Shinde
Integrating additive manufacturing (AM) tools in traditional mold-making provides complex yet affordable sand molds and cores. AM processes such as selective laser sintering (SLS…
Abstract
Purpose
Integrating additive manufacturing (AM) tools in traditional mold-making provides complex yet affordable sand molds and cores. AM processes such as selective laser sintering (SLS) and Binder jetting three-dimensional printing (BJ3DP) are widely used for patternless sand mold and core production. This study aims to perform an in-depth literature review to understand the current status, determine research gaps and propose future research directions. In addition, obtain valuable insights into authors, organizations, countries, keywords, documents, sources and cited references, sources and authors.
Design/methodology/approach
This study followed the systematic literature review (SLR) to gather relevant rapid sand casting (RSC) documents via Scopus, Web of Science and EBSCO databases. Furthermore, bibliometrics was performed via the Visualization of Similarities (VOSviewer) software.
Findings
An evaluation of 116 documents focused primarily on commercial AM setups and process optimization of the SLS. Process optimization studies the effects of AM processes, their input parameters, scanning approaches, sand types and the integration of computer-aided design in AM on the properties of sample. The authors performed detailed bibliometrics of 80 out of 120 documents via VOSviewer software.
Research limitations/implications
This review focuses primarily on the SLS AM process.
Originality/value
A SLR and bibliometrics using VOSviewer software for patternless sand mold and core production via the AM process.
Details