Search results
1 – 8 of 8Dangshu Wang, Mingyao Liu, Ruchuan Zhang, Jiahao Yang and Jing Wang
The purpose of this study is to solve the problem of longer dead-time in the rear bridge leg switches and lower efficiency in the Four-Switch Buck-Boost LLC Resonant Converter.
Abstract
Purpose
The purpose of this study is to solve the problem of longer dead-time in the rear bridge leg switches and lower efficiency in the Four-Switch Buck-Boost LLC Resonant Converter.
Design/methodology/approach
The paper adopts time-domain analysis to derive the time-domain expression for optimal dead time, analyzing the conditions for achieving soft switching of the transistors. It further explores the relationship between the dead time of the bridge arm switching transistors and the input/output of the converter under different operating conditions. Specifically, the dead time of the upper bridge arm transistors increases with the converter input voltage and decreases with the output current. In contrast, the dead time of the lower bridge arm transistors is independent of the converter output current and decreases with increasing converter input voltage.
Findings
By simulating and constructing a 500 W experimental prototype, experimental results indicate that designing the dead time of the switch according to the optimal dead time proposed in this paper significantly improves efficiency when the converter operates from heavy load to full load. When the transformer takes minimum input, maximum input and intermediate bus voltage inputs respectively, its peak efficiency is increased by 0.6%, 1.7% and 1.1%, respectively, compared to the traditional four-switch Buck–Boost LLC resonant converter.
Originality/value
Experimental validation confirms the correctness of the optimal dead time design and analyzes the impact of different operating conditions of the converter on the dead time. This is of significant importance for the rational design of switch dead times and the enhancement of converter efficiency.
Details
Keywords
Jiahao Ge, Jinwu Xiang and Daochun Li
A densely distributed network radar system compensates for the disadvantages of sparse radars and poses a significant threat to low-altitude penetration by an unmanned combat…
Abstract
Purpose
A densely distributed network radar system compensates for the disadvantages of sparse radars and poses a significant threat to low-altitude penetration by an unmanned combat aerial vehicle (UCAV). Unlike previous studies, this paper aims to consider radar blind areas and proposes a rapid online method for planning low-altitude penetration paths.
Design/methodology/approach
First, the optimization problem coupling digital elevation map (DEM), radar detection probability model and nonholonomic UCAV kinematic model is established. Second, an online solution framework of penetration path planning is constructed. An intervisibility method and map scaling are proposed to generate a detection probability map (DPM). Through completeness and consistency analysis, an adaptive hybrid A* algorithm with fast local replanning strategy is proposed to search a path that takes into account time-consuming, detection probability under nonholonomic constraints. Finally, three scenarios of multiple known, pop-up and vanished static radars are simulated using C++. The computational performance is compared and analyzed.
Findings
The results showed that the proposed online method can generate low-detection-probability penetration paths within subseconds.
Originality/value
This paper provides a new online method to plan UCAV penetration trajectory in military and academic contexts.
Details
Keywords
Yaxiong Wu, Jiahao Chen and Hong Qiao
The purpose of this study is realizing human-like motions and performance through musculoskeletal robots and brain-inspired controllers. Human-inspired robotic systems, owing to…
Abstract
Purpose
The purpose of this study is realizing human-like motions and performance through musculoskeletal robots and brain-inspired controllers. Human-inspired robotic systems, owing to their potential advantages in terms of flexibility, robustness and generality, have been widely recognized as a promising direction of next-generation robots.
Design/methodology/approach
In this paper, a deep forward neural network (DFNN) controller was proposed inspired by the neural mechanisms of equilibrium-point hypothesis (EPH) and musculoskeletal dynamics.
Findings
First, the neural mechanism of EPH in human was analyzed, providing the basis for the control scheme of the proposed method. Second, the effectiveness of proposed method was verified by demonstrating that equilibrium states can be reached under the constant activation signals. Finally, the performance was quantified according to the experimental results.
Originality/value
Based on the neural mechanism of EPH, a DFNN was crafted to simulate the process of activation signal generation in human motion control. Subsequently, a bio-inspired musculoskeletal robotic system was designed, and the high-precision target-reaching tasks were realized in human manner. The proposed methods provide a direction to realize the human-like motion in musculoskeletal robots.
Details
Keywords
Jianyong Liu, Xueke Luo, Long Li, Fangyuan Liu, Chuanyang Qiu, Xinghao Fan, Haoran Dong, Ruobing Li and Jiahao Liu
Utilizing electrical discharge machining (EDM) to process micro-holes in superalloys may lead to the formation of remelting layers and micro-cracks on the machined surface. This…
Abstract
Purpose
Utilizing electrical discharge machining (EDM) to process micro-holes in superalloys may lead to the formation of remelting layers and micro-cracks on the machined surface. This work proposes a method of composite processing of EDM and ultrasonic vibration drilling for machining precision micro-holes in complex positions of superalloys.
Design/methodology/approach
A six-axis computer numerical control (CNC) machine tool was developed, whose software control system adopted a real-time control architecture that integrates electrical discharge and ultrasonic vibration drilling. Among them, the CNC system software was developed based on Windows + RTX architecture, which could process the real-time processing state received by the hardware terminal and adjust the processing state. Based on the SoC (System on Chip) technology, an architecture for a pulse generator was developed. The circuit of the pulse generator was designed and implemented. Additionally, a composite mechanical system was engineered for both drilling and EDM. Two sets of control boards were designed for the hardware terminal. One set was the EDM discharge control board, which detected the discharge state and provided the pulse waveform for turning on the transistor. The other was a relay control card based on STM32, which could meet the switch between EDM and ultrasonic vibration, and used the Modbus protocol to communicate with the machining control software.
Findings
The mechanical structure of the designed composite machine tool can effectively avoid interference between the EDM spindle and the drilling spindle. The removal rate of the remelting layer on 1.5 mm single crystal superalloys after composite processing can reach over 90%. The average processing time per millimeter was 55 s, and the measured inner surface roughness of the hole was less than 1.6 µm, which realized the micro-hole machining without remelting layer, heat affected zone and micro-cracks in the single crystal superalloy.
Originality/value
The test results proved that the key techniques developed in this paper were suite for micro-hole machining of special materials.
Details
Keywords
Jiahao Liu, Xi Xu and Jing Liu
Although building information modeling (BIM) has brought competitive advantages and many new jobs, the BIM-related job market is still confusing in China, which will undermine the…
Abstract
Purpose
Although building information modeling (BIM) has brought competitive advantages and many new jobs, the BIM-related job market is still confusing in China, which will undermine the adoption of BIM. This paper aims to show what kinds of BIM-related jobs are there in China, what employers require and whether all BIM engineers are the same kind.
Design/methodology/approach
A text mining approach, structural topic model, was used to process the job descriptions of 1,221 BIM-related online job advertisements in China, followed by a cluster analysis based on it.
Findings
First, 10 topics of requirements with the impact of experience and educational background to them were found, namely, rendering software, international project, design, management, personal quality, experience, modeling, relation and certificate. Then, six types were clustered, namely, BIM modeler, BIM application engineer, BIM consultant, BIM manager, BIM developer and BIM designer. Finally, different kinds of BIM engineers proved this title was an expediency leading to confusion.
Originality/value
This paper can provide a clear and insightful look into the confusing and unheeded BIM-related job market in China and might help to cope with the abuse of job titles. It could also benefit both employers and candidates in their recruitment for better matching.
Details
Keywords
Zhouhai Chen, Hong Wang and Jiahao Hu
Food labels are increasingly used to provide information to consumers. As a common design strategy used for food package labels globally, label frame is often used to expand the…
Abstract
Purpose
Food labels are increasingly used to provide information to consumers. As a common design strategy used for food package labels globally, label frame is often used to expand the perceived breadth of a brand and create a broader brand image. We evaluated the effect of the presence or absence of a non-genetically modified organism (non-GMO) label frame on consumers' preferences for non-GMO foods.
Design/methodology/approach
This study collected data from 120 MBA students at a university in Sichuan, China, and 126 foreign volunteers in a shopping mall in Chengdu, Sichuan Province. The study investigates the effect of the presence or absence of non-GMO label frame (i.e. label with or without an outline) on non-GMO food preferences through a field survey and two controlled experiments. To empirically analyse the psychological mechanisms by which non-GMO label frames affect consumers' preferences for non-GMO food, we set up the mediating variable of food association of safety.
Findings
For ordinary consumers, a framed non-GMO label is more likely to evoke food association of safety and further enhance consumer preference for non-GMO foods. It facilitates consumers' choice of healthier foods. This finding did not otherwise vary across demographic characteristics.
Originality/value
This study is the first to examine the influence of non-GMO label frames on consumers' non-GMO food preferences, which is an innovative research question. The findings of this study are instructive for food manufacturers and policymakers to better design and use non-GMO label frames to attract more consumers to choose non-GMO foods.
Details
Keywords
Jiahao Jiang, Jinliang Liu, Shuolei Cao, Sheng Cao, Rui Dong and Yusen Wu
The purpose of this study is to use the corrected stress field theory to derive the shear capacity of geopolymer concrete beams (GPC) and consider the shear-span ratio as a major…
Abstract
Purpose
The purpose of this study is to use the corrected stress field theory to derive the shear capacity of geopolymer concrete beams (GPC) and consider the shear-span ratio as a major factor affecting the shear capacity. This research aims to provide guidance for studying the shear capacity of GPC and to observe how the failure modes of beams change with the variation of the shear-span ratio, thereby discovering underlying patterns.
Design/methodology/approach
Three test beams with shear span ratios of 1.5, 2.0 and 2.5 are investigated in this paper. For GPC beams with shear-span ratios of 1.5, 2.0 and 2.5, ultimate capacities are 337kN, 235kN and 195kN, respectively. Transitioning from 1.5 to 2.0 results in a 30% decrease in capacity, a reduction of 102kN. Moving from 2.0 to 2.5 sees a 17% decrease, with a loss of 40KN in capacity. A shear capacity formula, derived from modified compression field theory and considering concrete shear strength, stirrups and aggregate interlocking force, was validated through finite element modeling. Additionally, models with shear ratios of 1 and 3 were created to observe crack propagation patterns.
Findings
For GPC beams with shear-span ratios of 1.5, 2.0 and 2.5, ultimate capacities of 337KN, 235KN and 195KN are achieved, respectively. A reduction in capacity of 102KN occurs when transitioning from 1.5 to 2.0 and a decrease of 40KN is observed when moving from 2.0 to 2.5. The average test-to-theory ratio, at 1.015 with a variance of 0.001, demonstrates strong agreement. ABAQUS models beams with ratios ranging from 1.0 to 3.0, revealing crack trends indicative of reduced crack angles with higher ratios. The failure mode observed in the models aligns with experimental results.
Originality/value
This article provides a reference for the shear bearing capacity formula of geopolymer reinforced concrete (GRC) beams, addressing the limited research in this area. Additionally, an exponential model incorporating the shear-span ratio as a variable was employed to calculate the shear capacity, based on previous studies. Moreover, the analysis of shear capacity results integrated literature from prior research. By fitting previous experimental data to the proposed formula, the accuracy of this study's derived formula was further validated, with theoretical values aligning well with experimental results. Additionally, guidance is offered for utilizing ABAQUS in simulating the failure process of GRC beams.
Details