Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 12 January 2024

Qing Jiang, Yuhang Wan, Xiaoqian Li, Xueru Qu, Shengnan Ouyang, Yi Qin, Zhenyu Zhu, Yushu Wang, Hualing He and Zhicai Yu

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without…

272

Abstract

Purpose

This study aims to evaluate the thermal performance of sodium alginate (SA) aerogel attached to nano SiO2 and its radiative cooling effect on firefighting clothing without environmental pollution.

Design/methodology/approach

SA/SiO2 aerogel with refractory heat insulation and enhanced radiative cooling performance was fabricated by freeze-drying method, which can be used in firefighting clothing. The microstructure, chemical composition, thermal stability, and thermal emissivity were analyzed using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analyzer and infrared emissivity measurement instrument. The radiative cooling effect of aerogel was studied using thermal infrared imager and thermocouple.

Findings

When the addition of SiO2 is 25% of SA, the prepared aerogel has excellent heat insulation and a high radiative cooling effect. Under a clear sky, the temperature of SA/SiO2 aerogel is 9.4°C lower than that of pure SA aerogel and 22.1°C lower than that of the simulated environment. In addition, aerogel has more exceptional heat insulation effect than other common fabrics in the heat insulation performance test.

Research limitations/implications

SA/SiO2 aerogel has passive radiative cooling function, which can efficaciously economize global energy, and it is paramount to environment-friendly cooling.

Practical implications

This method could pave the way for high-performance cooling materials designed for firefighting clothing to keep maintain the wearing comfort of firefighters.

Originality/value

SA/SiO2 aerogel used in firefighting clothing can release heat to the low-temperature outer space in the form of thermal radiation to achieve its own cooling purpose, without additional energy supply.

Graphical abstract

Details

Pigment & Resin Technology, vol. 54 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 10 January 2025

Aparna Krishna, Kulsum Parween and Mohd Irfan

This study aims to argue that responses in economic growth (EG) resulting from positive and negative shocks in energy consumption could be a non-linear phenomenon. Thus, the study…

26

Abstract

Purpose

This study aims to argue that responses in economic growth (EG) resulting from positive and negative shocks in energy consumption could be a non-linear phenomenon. Thus, the study aims to investigate the existence of non-linear long-run effects of positive and negative shocks in green and conventional energy consumption on EG for China and India. By decomposing energy consumption in positive and negative shocks, the study seeks to determine the distinct impact of positive and negative shocks in energy (conventional and green) consumption on EG of China and India.

Design/methodology/approach

A non-linear autoregressive distributed lag (NARDL) model based on energy-augmented environment Kuznets curve (EKC) framework is used on annual time series covering the period 1965–2021. The study uses a precise econometric methodology, starting with unit root tests to assess stationarity, moving to the estimation of the NARDL model, which resulted in the calculation of long-run coefficients and error correction terms to analyse the rate of adjustment towards equilibrium.

Findings

The empirical findings demonstrate that there exists a non-linear cointegrating relationship among EG, carbon emissions and green and conventional energy consumption for both economies. In the long run, a non-linear impact of green energy consumption (GEC) on EG is evident for China only, whereas non-linear impact of conventional energy consumption (CEC) on EG is visible for both countries.

Practical implications

While China and India prioritise energy diversification by embracing green energy to promote energy security and limit rising carbon emissions, it is interesting to investigate how positive and negative shocks in GEC and CEC have affected their EG. Second, this paper examines the trade-offs between EG and GEC/CEC in China and India, two high-carbon emitters. The disparities in trade-offs may indicate how well each country’s energy policies address increased EG with fewer energy-induced carbon emissions.

Originality/value

This study examines non-linear cointegration among the variables of interest, whereas most prior studies have focused on linear cointegration. The existence of non-linear cointegration may suggest that positive and negative shocks in GEC and CEC can result in non-linear reactions in EG. Thus, it establishes a basis for examining the non-linear long-term effects of GEC and CEC on EG. The research findings indicate significant consequences and necessitate prompt intervention to alleviate the detrimental impacts of shocks in GEC and CEC on EG in China and India and provide several important inputs to address the inherent challenges of energy transition goals.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

1 – 2 of 2
Per page
102050