Search results
1 – 4 of 4This study investigates the effects of two types of self-disclosure by influencers (i.e. personal self-disclosure and professional self-disclosure) on followers’ parasocial…
Abstract
Purpose
This study investigates the effects of two types of self-disclosure by influencers (i.e. personal self-disclosure and professional self-disclosure) on followers’ parasocial relationships with them and online engagement with their content, which eventually affect followers’ purchase intentions.
Design/methodology/approach
This study collected data based on a cross-sectional survey of 823 social media users. Structural equation modeling analysis was used to test the overall structural model and the mediating roles of parasocial relationships and engagement.
Findings
This study reveals that influencers’ personal self-disclosure has a positive impact on followers’ parasocial relationships with them and online engagement with their content. Interestingly, the results indicate an inverted U-shaped relationship between influencers’ professional self-disclosure and followers’ parasocial relationships, as well as online engagement with the influencers’ content. Furthermore, followers’ parasocial relationships and engagement partially mediate the impact of influencers’ personal and professional self-disclosure on followers’ purchase intentions.
Research limitations/implications
This study contributes to the literature by revealing the underlying mechanisms of the differential effects of influencers’ personal and professional self-disclosure on followers’ purchase intentions.
Practical implications
The findings will assist marketers in leveraging influencer-generated content to enhance influencer marketing effectiveness.
Originality/value
This research provides a better understanding of the potential linear and nonlinear effects of influencers’ self-disclosure on followers’ parasocial relationships and engagement in social media marketing.
Details
Keywords
Haonan Guo, Chunxia Wang and Hui Liu
This study aims to investigate a chromium-free sealing treatment process to replace the chromate sealing process in response to the environmental hazards caused by chromate in the…
Abstract
Purpose
This study aims to investigate a chromium-free sealing treatment process to replace the chromate sealing process in response to the environmental hazards caused by chromate in the Phosphate chemical conversion (PCC) coating post-treatment sealing process.
Design/methodology/approach
In this paper, chromium-free sealing technology was used to post-treat PCC coatings. Scanning electron microscopy was used to investigate the structure of the surface of the PCC coatings after the sealing treatment, and the corrosion resistance, hydrophobicity and bonding were tested using an electrochemical workstation, a copper sulfate spot-drop test, a lacquer bonding test, a contact angle meter and a neutral salt spray test.
Findings
Chromium-free closure makes the grain distribution on the surface of the PCC coating more uniform and dense, and forms an organic film on the surface of the coating, which significantly improves the corrosion resistance and hydrophobicity of the PCC coating, does not affect the coating film bonding force and has similar performance with potassium dichromate solution.
Originality/value
The results show that the corrosion resistance of PCC coatings after chromium-free sealing treatment is improved, and chromium-free sealing has the potential to replace chromium sealing.
Details
Keywords
Behzad Abbasnejad, Sahar Soltani, Amirhossein Karamoozian and Ning Gu
This systematic literature review aims to investigate the application and integration of Industry 4.0 (I4.0) technologies in transportation infrastructure construction projects…
Abstract
Purpose
This systematic literature review aims to investigate the application and integration of Industry 4.0 (I4.0) technologies in transportation infrastructure construction projects focusing on sustainability pillars.
Design/methodology/approach
The study employs a systematic literature review approach, combining qualitative review and quantitative analysis of 142 academic articles published between 2011 and March 2023.
Findings
The findings reveal the dominance of Building Information Modelling (BIM) as a central tool for sustainability assessment, while other technologies such as blockchain and autonomous robotics have received limited attention. The adoption of I4.0 technologies, including Internet of Things (IoT) sensors, Augmented Reality (AR), and Big Data, has been prevalent for data-driven analyses, while Unmanned Aerial Vehicle (UAVs) and 3D printing are mainly being integrated either with BIM or in synergy with Artificial Intelligence (AI). We pinpoint critical challenges including high adoption costs, technical barriers, lack of interoperability, and the absence of standardized sustainability benchmarks.
Originality/value
This research distinguishes itself by not only mapping the current integration of I4.0 technologies but also by advocating for standardization and a synergistic human-technology collaborative approach. It offers tailored strategic pathways for diverse types of transportation infrastructure and different project phases, aiming to significantly enhance operational efficiency and sustainability. The study sets a new agenda for leveraging cutting-edge technologies to meet ambitious future sustainability and efficiency goals, making a compelling case for rethinking how these technologies are applied in the construction sector.
Details
Keywords
Yang Liu, Yuefan Hu, Dongxiang Xie, Yongjie Zhang and Jianqiang Chen
The paper aims to propose a generation approach for unstructured surface mesh to speed up mesh generation.
Abstract
Purpose
The paper aims to propose a generation approach for unstructured surface mesh to speed up mesh generation.
Design/methodology/approach
The paper proposes a lightweight interactive generation approach for unstructured surface mesh and presents several key technologies to support this approach.
Findings
The experimental results show that the proposed approach is feasible for unstructured meshes and it can accelerate the mesh generation process.
Research limitations/implications
More geometric defects should be covered, and more convenient and efficient interactive means need to be provided.
Practical implications
The proposed approach and key technologies are implemented in NNW-GridStar.UG, which is the unstructured version of the mesh generation software of National Numerical Windtunnel (NNW).
Originality/value
This paper proposes a lightweight interactive approach for unstructured surface mesh generation, which can speed up mesh generation.
Details