Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 26 September 2024

Hayet Soltani, Jamila Taleb, Fatma Ben Hamadou and Mouna Boujelbène-Abbes

This study investigates clean energy, commodities, green bonds and environmental, social and governance (ESG) index prices forecasting and assesses the predictive performance of…

141

Abstract

Purpose

This study investigates clean energy, commodities, green bonds and environmental, social and governance (ESG) index prices forecasting and assesses the predictive performance of various factors on these asset prices, used for the development of a robust forecasting support decision model using machine learning (ML) techniques. More specifically, we explore the impact of the financial stress on forecasting price.

Design/methodology/approach

We utilize feature selection techniques to evaluate the predictive efficacy of various factors on asset prices. Moreover, we have developed a forecasting model for these asset prices by assessing the accuracy of two ML models: specifically, the deep learning long short-term memory (LSTM) neural networks and the extreme gradient boosting (XGBoost) model. To check the robustness of the study results, the authors referred to bootstrap linear regression as an alternative traditional method for forecasting green asset prices.

Findings

The results highlight the significance of financial stress in enhancing price forecast accuracy, with the financial stress index (FSI) and panic index (PI) emerging as primary determinants. In terms of the forecasting model's accuracy, our analysis reveals that the LSTM outperformed the XGBoost model, establishing itself as the most efficient algorithm among the two tested.

Practical implications

This research enhances comprehension, which is valuable for both investors and policymakers seeking improved price forecasting through the utilization of a predictive model.

Originality/value

To the authors' best knowledge, this marks the inaugural attempt to construct a multivariate forecasting model. Indeed, the development of a robust forecasting model utilizing ML techniques provides practical value as a decision support tool for shaping investment strategies.

Details

EuroMed Journal of Business, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1450-2194

Keywords

Available. Open Access. Open Access
Article
Publication date: 24 May 2023

Hayet Soltani, Jamila Taleb and Mouna Boujelbène Abbes

This paper aims to analyze the connectedness between Gulf Cooperation Council (GCC) stock market index and cryptocurrencies. It investigates the relevant impact of RavenPack COVID…

1379

Abstract

Purpose

This paper aims to analyze the connectedness between Gulf Cooperation Council (GCC) stock market index and cryptocurrencies. It investigates the relevant impact of RavenPack COVID sentiment on the dynamic of stock market indices and conventional cryptocurrencies as well as their Islamic counterparts during the onset of the COVID-19 crisis.

Design/methodology/approach

The authors rely on the methodology of Diebold and Yilmaz (2012, 2014) to construct network-associated measures. Then, the wavelet coherence model was applied to explore co-movements between GCC stock markets, cryptocurrencies and RavenPack COVID sentiment. As a robustness check, the authors used the time-frequency connectedness developed by Barunik and Krehlik (2018) to verify the direction and scale connectedness among these markets.

Findings

The results illustrate the effect of COVID-19 on all cryptocurrency markets. The time variations of stock returns display stylized fact tails and volatility clustering for all return series. This stressful period increased investor pessimism and fears and generated negative emotions. The findings also highlight a high spillover of shocks between RavenPack COVID sentiment, Islamic and conventional stock return indices and cryptocurrencies. In addition, we find that RavenPack COVID sentiment is the main net transmitter of shocks for all conventional market indices and that most Islamic indices and cryptocurrencies are net receivers.

Practical implications

This study provides two main types of implications: On the one hand, it helps fund managers adjust the risk exposure of their portfolio by including stocks that significantly respond to COVID-19 sentiment and those that do not. On the other hand, the volatility mechanism and investor sentiment can be interesting for investors as it allows them to consider the dynamics of each market and thus optimize the asset portfolio allocation.

Originality/value

This finding suggests that the RavenPack COVID sentiment is a net transmitter of shocks. It is considered a prominent channel of shock spillovers during the health crisis, which confirms the behavioral contagion. This study also identifies the contribution of particular interest to fund managers and investors. In fact, it helps them design their portfolio strategy accordingly.

Details

European Journal of Management and Business Economics, vol. 34 no. 1
Type: Research Article
ISSN: 2444-8451

Keywords

1 – 2 of 2
Per page
102050