Search results

1 – 2 of 2
Article
Publication date: 12 November 2024

Jia Wang, Haiyang Sun, Ding Chen, Yongjun Huang, Tao Dong, Hai Li, Lingnan Shen and Ziyu Yang

The paper aims to accurately measure the key motion parameters, such as velocity, azimuth and pitch angle, of the small flying object with a non-uniform curve trajectory. It…

Abstract

Purpose

The paper aims to accurately measure the key motion parameters, such as velocity, azimuth and pitch angle, of the small flying object with a non-uniform curve trajectory. It proposes a measurement method and its calculation model of non-uniform curve trajectory using a photoelectric sensor array.

Design/methodology/approach

First, the basic composition of the measurement system and mechanism of photoelectric sensor array are described, respectively. Second, a non-uniform curve mathematical measurement model is constructed differently from the traditional linear trajectory, taking into account the influence of gravity and air resistance. Third, the measurement error of the system is analyzed through numerical simulation. Finally, the accuracy and feasibility of the approach are verified by live-ammunition experiments.

Findings

The results show that the systematic error of the hitting point coordinates can be reduced by 9% compared to the traditional linear measurement model. Consequently, this method can meet the higher measurement requirement for the key motion parameters of the small flying object under the non-uniform curve trajectory. Research limitations/implications (if applicable)- although the approach itself is generalizable, the method is unable to detect the motion parameters of multiple small flying objects.

Research limitations/implications

Although the approach itself is generalizable, the method is unable to detect the motion parameters of the multiple small flying objects.

Practical implications

It is evident that the proposed non-uniform curve measurement model is more precise in quantifying the essential characteristics of the small flying object, particularly in consideration of the environmental conditions.

Social implications

The precise measurement of the key motion parameters of the small flying object can facilitate the enhancement of the protective performance of protective materials.

Originality/value

A novel approach to measurement is proposed, which differs from the conventional uniform trajectory model. To this end, the space construction of the photoelectric sensor array is optimized. The number of the sensors is revised.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 August 2024

Yahao Wang, Yanghong Li, Zhen Li, HaiYang He, Sheng Chen and Erbao Dong

Aiming at the problem of insufficient adaptability of robot motion planners under the diversity of end-effector constraints, this paper proposes Transformation Cross-sampling…

56

Abstract

Purpose

Aiming at the problem of insufficient adaptability of robot motion planners under the diversity of end-effector constraints, this paper proposes Transformation Cross-sampling Framework (TC-Framework) that enables the planner to adapt to different end-effector constraints.

Design/methodology/approach

This work presents a standard constraint methodology for representing end-effector constraints as a collection of constraint primitives. The constraint primitives are merged sequentially into the planner, and a unified constraint input interface and constraint module are added to the standard sampling-based planner framework. This approach enables the realization of a generic planner framework that avoids the need to build separate planners for different end-effector constraints.

Findings

Simulation tests have demonstrated that the planner based on TC-framework can adapt to various end-effector constraints. Physical experiments have also confirmed that the framework can be used in real robotic systems to perform autonomous operational tasks. The framework’s strong compatibility with constraints allows for generalization to other tasks without modifying the scheduler, significantly reducing the difficulty of robot deployment in task-diverse scenarios.

Originality/value

This paper proposes a unified constraint method based on constraint primitives to enhance the sampling-based planner. The planner can now adapt to different end effector constraints by opening up the input interface for constraints. A series of simulation tests were conducted to evaluate the TC-Framework-based planner, which demonstrated its ability to adapt to various end-effector constraints. Tests on a physical experimental system show that the framework allows the robot to perform various operational tasks without requiring modifications to the planner. This enhances the value of robots for applications in fields with diverse tasks.

Details

Robotic Intelligence and Automation, vol. 44 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 2 of 2