Search results
1 – 1 of 1The purpose of this paper is to investigate the vehicle-based sensor effect and pavement temperature on road condition assessment, as well as to compute a threshold value for the…
Abstract
Purpose
The purpose of this paper is to investigate the vehicle-based sensor effect and pavement temperature on road condition assessment, as well as to compute a threshold value for the classification of pavement conditions.
Design/methodology/approach
Four sensors were placed on the vehicle’s control arms and one inside the vehicle to collect vibration acceleration data for analysis. The Analysis of Variance (ANOVA) tests were performed to diagnose the effect of the vehicle-based sensors’ placement in the field. To classify road conditions and identify pavement distress (point of interest), the probability distribution was applied based on the magnitude values of vibration data.
Findings
Results from ANOVA indicate that pavement sensing patterns from the sensors placed on the front control arms were statistically significant, and there is no difference between the sensors placed on the same side of the vehicle (e.g., left or right side). A reference threshold (i.e., 1.7 g) was computed from the distribution fitting method to classify road conditions and identify the road distress based on the magnitude values that combine all acceleration along three axes. In addition, the pavement temperature was found to be highly correlated with the sensing patterns, which is noteworthy for future projects.
Originality/value
The paper investigates the effect of pavement sensors’ placement in assessing road conditions, emphasizing the implications for future road condition assessment projects. A threshold value for classifying road conditions was proposed and applied in class assignments (I-17 highway projects).
Details