Search results

1 – 2 of 2
Article
Publication date: 29 May 2024

Elena Mazurova and Willem Standaert

This study aims to uncover the constraints of automation and the affordances of augmentation related to implementing artificial intelligence (AI)-powered systems across different…

Abstract

Purpose

This study aims to uncover the constraints of automation and the affordances of augmentation related to implementing artificial intelligence (AI)-powered systems across different task types: mechanical, thinking and feeling.

Design/methodology/approach

Qualitative study involving 45 interviews with various stakeholders in artistic gymnastics, for which AI-powered systems for the judging process are currently developed and tested. Stakeholders include judges, gymnasts, coaches and a technology vendor.

Findings

We identify perceived constraints of automation, such as too much mechanization, preciseness and inability of the system to evaluate artistry or to provide human interaction. Moreover, we find that the complexity and impreciseness of the rules prevent automation. In addition, we identify affordances of augmentation such as speedier, fault-less, more accurate and objective evaluation. Moreover, augmentation affords to provide an explanation, which in turn may decrease the number of decision disputes.

Research limitations/implications

While the unique context of our study is revealing, the generalizability of our specific findings still needs to be established. However, the approach of considering task types is readily applicable in other contexts.

Practical implications

Our research provides useful insights for organizations that consider implementing AI for evaluation in terms of possible constraints, risks and implications of automation for the organizational practices and human agents while suggesting augmented AI-human work as a more beneficial approach in the long term.

Originality/value

Our granular approach provides a novel point of view on AI implementation, as our findings challenge the notion of full automation of mechanical and partial automation of thinking tasks. Therefore, we put forward augmentation as the most viable AI implementation approach. In addition, we developed a rich understanding of the perception of various stakeholders with a similar institutional background, which responds to recent calls in socio-technical research.

Details

Information Technology & People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-3845

Keywords

Content available
Book part
Publication date: 1 September 2024

Matthew W. Ragas and Ron Culp

Abstract

Details

Business Acumen for Strategic Communicators
Type: Book
ISBN: 978-1-83797-085-8

1 – 2 of 2