Search results

1 – 1 of 1
Article
Publication date: 28 June 2024

Haihua Chen, Jeonghyun (Annie) Kim, Jiangping Chen and Aisa Sakata

This study aims to explore the applications of natural language processing (NLP) and data analytics in understanding large-scale digital collections in oral history archives.

Abstract

Purpose

This study aims to explore the applications of natural language processing (NLP) and data analytics in understanding large-scale digital collections in oral history archives.

Design/methodology/approach

NLP and data analytics were used to analyse the oral interview transcripts of 904 survivors of the Japanese American incarceration camps collected from Densho Digital Repository, relying specifically on descriptive analysis, keyword extraction, topic modelling and sentiment analysis (SA).

Findings

The researchers found multiple geographic areas of large residential communities of ethnic Japanese people and the place names of the concentration camps. The keywords and topics extracted reflect the deplorable conditions and militaristic nature of the camps and the forced labour of the internees. When remembering history, the main focus for the narrators remains the redress and reparation movement to obtain the restitution of their civil rights. SA further found that the forcible removal and incarceration of Japanese Americans during Second World War negatively impacted and brought deep trauma to the narrators.

Originality/value

This case study demonstrated how NLP and data analytics could be applied to analyse oral history archives and open avenues for discovery. Archival researchers and the general public may benefit from this type of analysis in making connections between temporal, spatial and emotional elements, which will contribute to a holistic understanding of individuals and communities in terms of their collective memory.

Details

The Electronic Library , vol. 42 no. 4
Type: Research Article
ISSN: 0264-0473

Keywords

Access

Year

Last 6 months (1)

Content type

1 – 1 of 1