Search results

1 – 10 of 356
Article
Publication date: 31 July 2024

Yongqing Ma, Yifeng Zheng, Wenjie Zhang, Baoya Wei, Ziqiong Lin, Weiqiang Liu and Zhehan Li

With the development of intelligent technology, deep learning has made significant progress and has been widely used in various fields. Deep learning is data-driven, and its…

43

Abstract

Purpose

With the development of intelligent technology, deep learning has made significant progress and has been widely used in various fields. Deep learning is data-driven, and its training process requires a large amount of data to improve model performance. However, labeled data is expensive and not readily available.

Design/methodology/approach

To address the above problem, researchers have integrated semi-supervised and deep learning, using a limited number of labeled data and many unlabeled data to train models. In this paper, Generative Adversarial Networks (GANs) are analyzed as an entry point. Firstly, we discuss the current research on GANs in image super-resolution applications, including supervised, unsupervised, and semi-supervised learning approaches. Secondly, based on semi-supervised learning, different optimization methods are introduced as an example of image classification. Eventually, experimental comparisons and analyses of existing semi-supervised optimization methods based on GANs will be performed.

Findings

Following the analysis of the selected studies, we summarize the problems that existed during the research process and propose future research directions.

Originality/value

This paper reviews and analyzes research on generative adversarial networks for image super-resolution and classification from various learning approaches. The comparative analysis of experimental results on current semi-supervised GAN optimizations is performed to provide a reference for further research.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 12 September 2024

Zhanglin Peng, Tianci Yin, Xuhui Zhu, Xiaonong Lu and Xiaoyu Li

To predict the price of battery-grade lithium carbonate accurately and provide proper guidance to investors, a method called MFTBGAM is proposed in this study. This method…

Abstract

Purpose

To predict the price of battery-grade lithium carbonate accurately and provide proper guidance to investors, a method called MFTBGAM is proposed in this study. This method integrates textual and numerical information using TCN-BiGRU–Attention.

Design/methodology/approach

The Word2Vec model is initially employed to process the gathered textual data concerning battery-grade lithium carbonate. Subsequently, a dual-channel text-numerical extraction model, integrating TCN and BiGRU, is constructed to extract textual and numerical features separately. Following this, the attention mechanism is applied to extract fusion features from the textual and numerical data. Finally, the market price prediction results for battery-grade lithium carbonate are calculated and outputted using the fully connected layer.

Findings

Experiments in this study are carried out using datasets consisting of news and investor commentary. The findings reveal that the MFTBGAM model exhibits superior performance compared to alternative models, showing its efficacy in precisely forecasting the future market price of battery-grade lithium carbonate.

Research limitations/implications

The dataset analyzed in this study spans from 2020 to 2023, and thus, the forecast results are specifically relevant to this timeframe. Altering the sample data would necessitate repetition of the experimental process, resulting in different outcomes. Furthermore, recognizing that raw data might include noise and irrelevant information, future endeavors will explore efficient data preprocessing techniques to mitigate such issues, thereby enhancing the model’s predictive capabilities in long-term forecasting tasks.

Social implications

The price prediction model serves as a valuable tool for investors in the battery-grade lithium carbonate industry, facilitating informed investment decisions. By using the results of price prediction, investors can discern opportune moments for investment. Moreover, this study utilizes two distinct types of text information – news and investor comments – as independent sources of textual data input. This approach provides investors with a more precise and comprehensive understanding of market dynamics.

Originality/value

We propose a novel price prediction method based on TCN-BiGRU Attention for “text-numerical” information fusion. We separately use two types of textual information, news and investor comments, for prediction to enhance the model's effectiveness and generalization ability. Additionally, we utilize news datasets including both titles and content to improve the accuracy of battery-grade lithium carbonate market price predictions.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 5 November 2024

Yongcong Luo and He Zhu

Information is presented in various modalities such as text and images, and it can quickly and widely spread on social networks and among the general public through key…

Abstract

Purpose

Information is presented in various modalities such as text and images, and it can quickly and widely spread on social networks and among the general public through key communication nodes involved in public opinion events. Therefore, by tracking and identifying key nodes of public opinion, we can determine the direction of public opinion evolution and timely and effectively control public opinion events or curb the spread of false information.

Design/methodology/approach

This paper introduces a novel multimodal semantic enhanced representation based on multianchor mapping semantic community (MAMSC) for identifying key nodes in public opinion. MAMSC consists of four core components: multimodal data feature extraction module, feature vector dimensionality reduction module, semantic enhanced representation module and semantic community (SC) recognition module. On this basis, we combine the method of community discovery in complex networks to analyze the aggregation characteristics of different semantic anchors and construct a three-layer network module for public opinion node recognition in the SC with strong, medium and weak associations.

Findings

The experimental results show that compared with its variants and the baseline models, the MAMSC model has better recognition accuracy. This study also provides more systematic, forward-looking and scientific decision-making support for controlling public opinion and curbing the spread of false information.

Originality/value

We creatively combine the construction of variant autoencoder with multianchor mapping to enhance semantic representation and construct a three-layer network module for public opinion node recognition in the SC with strong, medium and weak associations. On this basis, our constructed MAMSC model achieved the best results compared to the baseline models and ablation evaluation models, with a precision of 91.21%.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 22 July 2024

Yifeng Zheng, Xianlong Zeng, Wenjie Zhang, Baoya Wei, Weishuo Ren and Depeng Qing

As intelligent technology advances, practical applications often involve data with multiple labels. Therefore, multi-label feature selection methods have attracted much attention…

Abstract

Purpose

As intelligent technology advances, practical applications often involve data with multiple labels. Therefore, multi-label feature selection methods have attracted much attention to extract valuable information. However, current methods tend to lack interpretability when evaluating the relationship between different types of variables without considering the potential causal relationship.

Design/methodology/approach

To address the above problems, we propose an ensemble causal feature selection method based on mutual information and group fusion strategy (CMIFS) for multi-label data. First, the causal relationship between labels and features is analyzed by local causal structure learning, respectively, to obtain a causal feature set. Second, we eliminate false positive features from the obtained feature set using mutual information to improve the feature subset reliability. Eventually, we employ a group fusion strategy to fuse the obtained feature subsets from multiple data sub-space to enhance the stability of the results.

Findings

Experimental comparisons are performed on six datasets to validate that our proposal can enhance the interpretation and robustness of the model compared with other methods in different metrics. Furthermore, the statistical analyses further validate the effectiveness of our approach.

Originality/value

The present study makes a noteworthy contribution to proposing a causal feature selection approach based on mutual information to obtain an approximate optimal feature subset for multi-label data. Additionally, our proposal adopts the group fusion strategy to guarantee the robustness of the obtained feature subset.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 10 October 2024

B. Sakthi and D. Sundar

An efficient customer behavior prediction model is designed using deep learning techniques. The necessary data used for the implementation are taken from standard datasets and…

Abstract

Purpose

An efficient customer behavior prediction model is designed using deep learning techniques. The necessary data used for the implementation are taken from standard datasets and presented to perform subsequent tasks. Here, deep restricted Boltzmann machines (RBM) features are retrieved from the input images. Further, the extracted deep RBM features are presented to the customer behavior prediction phase. Here, the attention-based hybrid deep learning (A-HDL) technique is designed based on the incorporation of a dilated deep temporal convolutional network (dilated-DTCN) and a weighted recurrent neural network (weighted RNN). Moreover, the weights in RNN are tuned using a modernized random parameter-based cheetah optimizer (MRPCO). Further, various experiments were performed on the implemented framework, and it secured an enhanced customer behavior prediction rate than the conventional models.

Design/methodology/approach

A novel hybrid deep network-based customer behavior prediction model was developed to predict the behavior of the customer so the companies yield more income by advertising their products based on the predicted results.

Findings

When considering the first dataset, the designed customer behavior prediction mechanism produced 94% accuracy, which is higher than the conventional techniques such as long short-term memory (LSTM), DTCN, RNN and A-HDL with 88%, 87%, 89% and 93%.

Originality/value

The precision and the accuracy of the developed MRPCO-A-HDL-based customer behavior prediction model progressed than the conventional techniques and algorithms.

Open Access
Article
Publication date: 10 April 2024

Mohammad Olfat

The primary objective of this investigation was to explore how employees’ utilization of social media for work-related purposes impacts their service innovation behavior, both…

1831

Abstract

Purpose

The primary objective of this investigation was to explore how employees’ utilization of social media for work-related purposes impacts their service innovation behavior, both directly and through the intermediary mechanisms of knowledge management and employees’ risk-taking.

Design/methodology/approach

In developing its conceptual framework, this study has drawn upon the stimulus-organism-response (SOR) theory. To test its hypotheses, this study has surveyed 241 financial analysts from ten Iranian financial companies and has employed variance-based structural equation modeling (specifically, PLS-SEM) with the assistance of “WarpPLS 8.0 software.”

Findings

The findings revealed that employees’ work-related use of social media positively influences their service innovation behavior using knowledge management, encompassing knowledge sharing and acquisition capability as well as employee risk-taking. However, this influence is not directly significant.

Originality/value

To the best of our knowledge, this study marks the first instance in which the effect of work-related use of social media on employee service innovation behavior directly and through the mediating roles of knowledge management and risk-taking has been investigated through the lens of the SOR paradigm, especially in the financial sector.

Article
Publication date: 27 September 2024

Dun Ao, Qian Cao and Xiaofeng Wang

This paper addresses the limitations of current graph neural network-based recommendation systems, which often neglect the integration of side information and the modeling of…

Abstract

Purpose

This paper addresses the limitations of current graph neural network-based recommendation systems, which often neglect the integration of side information and the modeling of complex high-order interactions among nodes. The research motivation stems from the need to enhance recommendation performance by effectively utilizing all available data. We propose a novel method called MSHCN, which leverages hypergraph neural networks to integrate side information and model complex interactions, thereby improving user and item representations.

Design/methodology/approach

The MSHCN method employs a hypergraph structure to incorporate various types of side information, including social relationships among users and item attributes, which are essential for enriching user and item representations. The k-means clustering algorithm is utilized to create item-associated hypergraphs, while sentiment analysis on user reviews refines the modeling of user interests. Additionally, hypergraphs are constructed for user-user and item-item interactions based on interaction similarity. MSHCN also incorporates contrastive learning as an auxiliary task to enhance the representation learning process.

Findings

Extensive experiments demonstrate that MSHCN significantly outperforms existing recommendation models, particularly in its ability to capture and utilize side information and high-order interactions. This results in superior user and item representations and improved recommendation performance.

Originality/value

The novelty of MSHCN lies in its use of a hypergraph structure to integrate diverse side information and model intricate high-order interactions. The incorporation of contrastive learning as an auxiliary task sets it apart from other hypergraph-based models, providing a significant enhancement in recommendation accuracy.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 5 November 2024

Xiaorong He, Bo Xiang, Zeshui Xu and Dejian Yu

This study aims to provide a comprehensive analysis of two-sided matching (TSM) research, an interdisciplinary field that integrates both theoretical and practical perspectives…

Abstract

Purpose

This study aims to provide a comprehensive analysis of two-sided matching (TSM) research, an interdisciplinary field that integrates both theoretical and practical perspectives. By examining 756 research articles from the Web of Science database, this paper seeks to identify key trends, collaboration patterns and emerging research topics within the TSM domain.

Design/methodology/approach

The research utilizes bibliometric analysis combined with a structural topic model to analyze TSM-related articles published between January 1, 2000, and September 30, 2022. The study identifies leading subfields, journals, countries/regions and institutions based on publication volume, total citations and average citations per article. Interaction and collaboration patterns among these entities are examined through co-occurrence and coupling networks. Additionally, five major research topics are identified and explored using topic modeling and co-word networks. This hybrid knowledge mining approach better reveals the inherent structural changes in topic clusters. Topic distribution and network analysis are beneficial in capturing the attention allocation of different entities to knowledge.

Findings

The analysis reveals five prominent research topics in TSM: communication resource allocation, stable matching research, computing task assignment, TSM decision-making and market matching mechanism design. These topics represent the main directions of TSM research. The study also uncovers a shift in research focus from theoretical aspects to practical applications. Furthermore, the distribution of knowledge and interaction patterns among key entities align with the identified research trends.

Originality/value

This study offers a novel and detailed overview of TSM research highlighting significant trends and collaboration patterns within the field. By integrating bibliometric methods with structural topic modeling the study provides unique insights into the evolution of TSM research making it a valuable resource for both academic and professional communities.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 26 August 2024

S. Punitha and K. Devaki

Predicting student performance is crucial in educational settings to identify and support students who may need additional help or resources. Understanding and predicting student…

Abstract

Purpose

Predicting student performance is crucial in educational settings to identify and support students who may need additional help or resources. Understanding and predicting student performance is essential for educators to provide targeted support and guidance to students. By analyzing various factors like attendance, study habits, grades, and participation, teachers can gain insights into each student’s academic progress. This information helps them tailor their teaching methods to meet the individual needs of students, ensuring a more personalized and effective learning experience. By identifying patterns and trends in student performance, educators can intervene early to address any challenges and help students acrhieve their full potential. However, the complexity of human behavior and learning patterns makes it difficult to accurately forecast how a student will perform. Additionally, the availability and quality of data can vary, impacting the accuracy of predictions. Despite these obstacles, continuous improvement in data collection methods and the development of more robust predictive models can help address these challenges and enhance the accuracy and effectiveness of student performance predictions. However, the scalability of the existing models to different educational settings and student populations can be a hurdle. Ensuring that the models are adaptable and effective across diverse environments is crucial for their widespread use and impact. To implement a student’s performance-based learning recommendation scheme for predicting the student’s capabilities and suggesting better materials like papers, books, videos, and hyperlinks according to their needs. It enhances the performance of higher education.

Design/methodology/approach

Thus, a predictive approach for student achievement is presented using deep learning. At the beginning, the data is accumulated from the standard database. Next, the collected data undergoes a stage where features are carefully selected using the Modified Red Deer Algorithm (MRDA). After that, the selected features are given to the Deep Ensemble Networks (DEnsNet), in which techniques such as Gated Recurrent Unit (GRU), Deep Conditional Random Field (DCRF), and Residual Long Short-Term Memory (Res-LSTM) are utilized for predicting the student performance. In this case, the parameters within the DEnsNet network are finely tuned by the MRDA algorithm. Finally, the results from the DEnsNet network are obtained using a superior method that delivers the final prediction outcome. Following that, the Adaptive Generative Adversarial Network (AGAN) is introduced for recommender systems, with these parameters optimally selected using the MRDA algorithm. Lastly, the method for predicting student performance is evaluated numerically and compared to traditional methods to demonstrate the effectiveness of the proposed approach.

Findings

The accuracy of the developed model is 7.66%, 9.91%, 5.3%, and 3.53% more than HHO-DEnsNet, ROA-DEnsNet, GTO-DEnsNet, and AOA-DEnsNet for dataset-1, and 7.18%, 7.54%, 5.43% and 3% enhanced than HHO-DEnsNet, ROA-DEnsNet, GTO-DEnsNet, and AOA-DEnsNet for dataset-2.

Originality/value

The developed model recommends the appropriate learning materials within a short period to improve student’s learning ability.

Article
Publication date: 29 August 2024

Yizhuo Zhang, Yunfei Zhang, Huiling Yu and Shen Shi

The anomaly detection task for oil and gas pipelines based on acoustic signals faces issues such as background noise coverage, lack of effective features, and small sample sizes…

Abstract

Purpose

The anomaly detection task for oil and gas pipelines based on acoustic signals faces issues such as background noise coverage, lack of effective features, and small sample sizes, resulting in low fault identification accuracy and slow efficiency. The purpose of this paper is to study an accurate and efficient method of pipeline anomaly detection.

Design/methodology/approach

First, to address the impact of background noise on the accuracy of anomaly signals, the adaptive multi-threshold center frequency variational mode decomposition method(AMTCF-VMD) method is used to eliminate strong noise in pipeline signals. Secondly, to address the strong data dependency and loss of local features in the Swin Transformer network, a Hybrid Pyramid ConvNet network with an Agent Attention mechanism is proposed. This compensates for the limitations of CNN’s receptive field and enhances the Swin Transformer’s global contextual feature representation capabilities. Thirdly, to address the sparsity and imbalance of anomaly samples, the SpecAugment and Scaper methods are integrated to enhance the model’s generalization ability.

Findings

In the pipeline anomaly audio and environmental datasets such as ESC-50, the AMTCF-VMD method shows more significant denoising effects compared to wavelet packet decomposition and EMD methods. Additionally, the model achieved 98.7% accuracy on the preprocessed anomaly audio dataset and 99.0% on the ESC-50 dataset.

Originality/value

This paper innovatively proposes and combines the AMTCF-VMD preprocessing method with the Agent-SwinPyramidNet model, addressing noise interference and low accuracy issues in pipeline anomaly detection, and providing strong support for oil and gas pipeline anomaly recognition tasks in high-noise environments.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of 356