Search results
1 – 7 of 7Bo Wang, Yifeng Yuan, Ke Wang and Shengli Cao
Passive chipless RFID (radio frequency identification) sensors, devoid of batteries or wires for data transmission to a signal reader, demonstrate stability in severe conditions…
Abstract
Purpose
Passive chipless RFID (radio frequency identification) sensors, devoid of batteries or wires for data transmission to a signal reader, demonstrate stability in severe conditions. Consequently, employing these sensors for metal crack detection ensures ease of deployment, longevity and reusability. This study aims to introduce a chipless RFID sensor design tailored for detecting metal cracks, emphasizing tag reusability and prolonged service life.
Design/methodology/approach
The passive RFID sensor is affixed to the surface of the aluminum plate under examination, positioned over the metal cracks. These cracks alter the electrical length of the sensor, thereby influencing its amplitude-frequency characteristics. Hence, the amplitude-frequency profile generated by various metal cracks can effectively ascertain the occurrence and orientation of the cracks.
Findings
Simulation and experimental results show that the proposed crack sensing tag produces different frequency amplitude changes for four directions of cracks and can recognize the crack direction. The sensor has a small size and simple structure, which makes it easy to deploy.
Originality/value
This research aims to deploy crack detection on metallic surfaces using passive chipless RFID sensors, analyze the amplitude-frequency characteristics of crack formation and distinguish cracks of varying widths and orientations. The designed sensor boasts a straightforward structural design, facilitating ease of deployment, and offers a degree of reusability.
Details
Keywords
Yongqing Ma, Yifeng Zheng, Wenjie Zhang, Baoya Wei, Ziqiong Lin, Weiqiang Liu and Zhehan Li
With the development of intelligent technology, deep learning has made significant progress and has been widely used in various fields. Deep learning is data-driven, and its…
Abstract
Purpose
With the development of intelligent technology, deep learning has made significant progress and has been widely used in various fields. Deep learning is data-driven, and its training process requires a large amount of data to improve model performance. However, labeled data is expensive and not readily available.
Design/methodology/approach
To address the above problem, researchers have integrated semi-supervised and deep learning, using a limited number of labeled data and many unlabeled data to train models. In this paper, Generative Adversarial Networks (GANs) are analyzed as an entry point. Firstly, we discuss the current research on GANs in image super-resolution applications, including supervised, unsupervised, and semi-supervised learning approaches. Secondly, based on semi-supervised learning, different optimization methods are introduced as an example of image classification. Eventually, experimental comparisons and analyses of existing semi-supervised optimization methods based on GANs will be performed.
Findings
Following the analysis of the selected studies, we summarize the problems that existed during the research process and propose future research directions.
Originality/value
This paper reviews and analyzes research on generative adversarial networks for image super-resolution and classification from various learning approaches. The comparative analysis of experimental results on current semi-supervised GAN optimizations is performed to provide a reference for further research.
Details
Keywords
The aim of this study is to discern the role of digital finance in driving rural industrial integration and revitalization. Specifically, it intends to shed light on how the deep…
Abstract
Purpose
The aim of this study is to discern the role of digital finance in driving rural industrial integration and revitalization. Specifically, it intends to shed light on how the deep development of digital finance can contribute to the optimization and transformation of the rural industrial structure. The research further explores the particular effects of this financial transformation in the central and western regions of China.
Design/methodology/approach
This research studies the influence of digital finance on rural industrial integration across 30 Chinese provinces from 2011 to 2020. Utilizing the entropy weight method, a comprehensive evaluation index system is established to gauge the level of rural industrial integration. A two-way fixed effects model, intermediary effect model, and threshold effect model are employed to decipher the relationship between digital finance and rural industrial integration.
Findings
Findings reveal a positive relationship between digital finance and rural industrial integration. A single threshold feature was identified: beyond a traditional finance development level, the marginal effect of digital finance on rural industrial integration increases. These effects are more noticeable in central and western regions.
Originality/value
Empirical outcomes contribute to policy discourse on rural digital finance, assisting policymakers in crafting effective strategies. Understanding the threshold of traditional finance development provides a new perspective on the potential of digital finance to drive rural industrial integration.
Details
Keywords
Yongliang Wang, Yifeng Duan, Yanpei Song and Yumeng Du
Supercritical CO2 (SC–CO2) fracturing is a potential technology that creates a complex fracturing fracture network to improve reservoir permeability. SC–CO2-driven intersections…
Abstract
Purpose
Supercritical CO2 (SC–CO2) fracturing is a potential technology that creates a complex fracturing fracture network to improve reservoir permeability. SC–CO2-driven intersections of the fracturing fracture network are influenced by some key factors, including the disturbances generated form natural fractures, adjacent multi-wells and adjacent fractures, which increase the challenges in evaluation, control and optimization of the SC–CO2 fracturing fracture networks. If the evaluation of the fracture network is not accurate and effective, the risk of oil and gas development will increase due to the microseismicity induced by multi-well SC–CO2 fracturing, which makes it challenging to control the on-site engineering practices.
Design/methodology/approach
The numerical models considering the thermal-hydro-mechanical coupling effect in multi-well SC–CO2 fracturing were established, and the typical cases considering naturally fracture and multi-wells were proposed to investigate the intersections and connections of fracturing fracture network, shear stress shadows and induced microseismic events. The quantitative results from the typical cases, such as fracture length, volume, fluid rate, pore pressure and the maximum and accumulated magnitudes of induced microseismic events, were derived.
Findings
In naturally fractured reservoirs, SC–CO2 fracturing fractures will deflect and propagate along the natural fractures, eventually intersect and connect with fractures from other wells. The quantitative results indicate that SC–CO2 fracturing in naturally fractured reservoirs produces larger fractures than the slick water as fracturing fluid, due to the ability of SC–CO2 to connect macroscopic and microscopic fractures. Compared with slick water fracturing, SC–CO2 fracturing can increase the length of fractures, but it will not increase microseismic events; therefore, SC–CO2 fracturing can improve fracturing efficiency and increase productivity, but it may not simultaneously lead to additional microseismic events.
Originality/value
The results of this study on the multi-well SC–CO2 fracturing may provide references for the fracturing design of deep oil and gas resource extraction, and provide some beneficial supports for the induced microseismic event disasters, promoting the next step of engineering application of multi-well SC–CO2 fracturing.
Details
Keywords
Yifeng Zheng, Xianlong Zeng, Wenjie Zhang, Baoya Wei, Weishuo Ren and Depeng Qing
As intelligent technology advances, practical applications often involve data with multiple labels. Therefore, multi-label feature selection methods have attracted much attention…
Abstract
Purpose
As intelligent technology advances, practical applications often involve data with multiple labels. Therefore, multi-label feature selection methods have attracted much attention to extract valuable information. However, current methods tend to lack interpretability when evaluating the relationship between different types of variables without considering the potential causal relationship.
Design/methodology/approach
To address the above problems, we propose an ensemble causal feature selection method based on mutual information and group fusion strategy (CMIFS) for multi-label data. First, the causal relationship between labels and features is analyzed by local causal structure learning, respectively, to obtain a causal feature set. Second, we eliminate false positive features from the obtained feature set using mutual information to improve the feature subset reliability. Eventually, we employ a group fusion strategy to fuse the obtained feature subsets from multiple data sub-space to enhance the stability of the results.
Findings
Experimental comparisons are performed on six datasets to validate that our proposal can enhance the interpretation and robustness of the model compared with other methods in different metrics. Furthermore, the statistical analyses further validate the effectiveness of our approach.
Originality/value
The present study makes a noteworthy contribution to proposing a causal feature selection approach based on mutual information to obtain an approximate optimal feature subset for multi-label data. Additionally, our proposal adopts the group fusion strategy to guarantee the robustness of the obtained feature subset.
Details
Keywords
Ying Hu and Feng’e Zheng
The ancient town of Lijiang is a representative place of ethnic minorities in China’s southwest border area jointly built by many ethnic groups. Its rich and diversified history…
Abstract
Purpose
The ancient town of Lijiang is a representative place of ethnic minorities in China’s southwest border area jointly built by many ethnic groups. Its rich and diversified history, culture and architecture as well as its artistic and spiritual values need to be better retained and explored.
Design/methodology/approach
The protection and inheritance of Lijiang’s cultural heritage will be improved through the construction of digital memory resources. To guide Lijiang’s digital memory construction, this study explores strategies of digital memory construction by analyzing four case studies of well-known memory projects from China and America.
Findings
From the case studies analysis, factors of digital memory construction were identified and compared. Factors led to the discussion of strategies for constructing the digital memory of Lijiang within its design, construction and service phases.
Originality/value
The ancient town of Lijiang is a famous historical and cultural city in China, and it is also a representative place of ethnic minorities in the border area jointly built by many ethnic groups. The rich culture should be preserved and digitalized to offer better use for the whole nation.
Details
Keywords
The purpose of this study is to examine how the implementation of edge computing can enhance the progress of the circular economy within supply chains and to address the…
Abstract
Purpose
The purpose of this study is to examine how the implementation of edge computing can enhance the progress of the circular economy within supply chains and to address the challenges and best practices associated with this emerging technology.
Design/methodology/approach
This study utilized a streamlined evaluation technique that employed Latent Dirichlet Allocation modeling for thorough content analysis. Extensive searches were conducted among prominent publishers, including IEEE, Elsevier, Springer, Wiley, MDPI and Hindawi, utilizing pertinent keywords associated with edge computing, circular economy, sustainability and supply chain. The search process yielded a total of 103 articles, with the keywords being searched specifically within the titles or abstracts of these articles.
Findings
There has been a notable rise in the volume of scholarly articles dedicated to edge computing in the circular economy and supply chain management. After conducting a thorough examination of the published papers, three main research themes were identified, focused on technology, optimization and circular economy and sustainability. Edge computing adoption in supply chains results in a more responsive, efficient and agile supply chain, leading to enhanced decision-making capabilities and improved customer satisfaction. However, the adoption also poses challenges, such as data integration, security concerns, device management, connectivity and cost.
Originality/value
This paper offers valuable insights into the research trends of edge computing in the circular economy and supply chains, highlighting its significant role in optimizing supply chain operations and advancing the circular economy by processing and analyzing real time data generated by the internet of Things, sensors and other state-of-the-art tools and devices.
Details