Search results
1 – 1 of 1Qiang Du, Xiaomin Qi, Patrick X.W. Zou and Yanmin Zhang
The purpose of this paper is to develop a bi-objective optimization framework to select prefabricated construction service composition. An improved algorithm-genetic simulated…
Abstract
Purpose
The purpose of this paper is to develop a bi-objective optimization framework to select prefabricated construction service composition. An improved algorithm-genetic simulated annealing algorithm (GSA) is employed to demonstrate the application of the framework.
Design/methodology/approach
The weighted aggregate multi-dimensional collaborative relationship is used to quantitatively evaluate the synergistic effect. The quality of service is measured using the same method. The research proposed a service combination selection framework of prefabricated construction that comprehensively considers the quality of service and synergistic effect. The framework is demonstrated by using a GSA that can accept poor solutions with a certain probability. Furthermore, GSA is compared with the genetic algorithm (GA), simulated annealing algorithm (SA) and particle swarm optimization algorithm (PSO) to validate the performance.
Findings
The results indicated that GSA has the largest optimal fitness value and synergistic effect compared with other algorithms, and the convergence time and convergence iteration of the improved algorithm are generally at a low level.
Originality/value
The contribution of this study is that the proposed framework enables project managers to clarify the interactions of the prefabricated construction process and provides guidance for project collaborative management. In addition, GSA helps to improve the probability of successful collaboration between potential partners, therefore enhancing client satisfaction.
Details