Search results
1 – 3 of 3Swarup Mukherjee, Anupam De and Supriyo Roy
Conventional risk prioritization methods rely on crisp inputs but struggle with imprecise data and hesitancy, resulting in inaccurate assessments that affect service and…
Abstract
Purpose
Conventional risk prioritization methods rely on crisp inputs but struggle with imprecise data and hesitancy, resulting in inaccurate assessments that affect service and information quality and performance monitoring. This study proposes a fuzzy data-driven risk prioritization model for service quality under imprecise information.
Design/methodology/approach
Enterprise risk management is crucial for service quality management, ensuring effective identification, assessment and mitigation of risks impacting service delivery and customer satisfaction. This paper proposes a fuzzy data-driven multi-criteria model for risk prioritization involving multiple decision-makers. It introduces a hybrid method combining intuitionistic and hesitant fuzzy group decision-making to assess better and prioritize risks based on decision-maker preferences.
Findings
The proposed hybrid fuzzy model improves service quality in business operations by efficiently representing uncertain information in traditional frameworks. It helps identify potential risks in advance and enhances control over business operations, enabling organizations to benchmark service quality and identify best practices. Accordingly, organizations acquire information and background knowledge to benchmark their service quality. This, in turn, improves service quality under performance management.
Research limitations/implications
Despite the advantages of fuzzy models in risk prioritization, such as mimicking human reasoning more accurately, their complexity can hinder adoption. The intricate computational steps may deter shop-floor managers who prefer the more straightforward conventional crisp RPN approach, which is easier to understand and implement. However, while developing a hybrid fuzzy risk prioritization model may require more effort, its benefits become apparent over time. Once developed, the model can be integrated into software applications, allowing decision-makers to use it easily. This integration simplifies fuzzy computations and enhances risk prioritization, leading to more informed decision-making and improved risk management in the long term.
Practical implications
The proposed robust fuzzy framework improves risk management by integrating uncertain information and multiple decision-makers expertise, leading to more reliable outputs that enhance strategic decisions and operational efficiency.
Originality/value
We validate the proposed approach at an integrated steel plant’s risk management process, covering broad areas of the service quality domain. To the best of our knowledge, no study exists in existing literature attempting to explore the efficacy of the proposed hybrid fuzzy approach in risk management practices at prime sectors like steel. The study’s novelty is backed by this validation experiment, which indicates that the effectiveness of the results obtained from the proposed multi-attribute hybrid fuzzy methodology is more practical. The model’s outcome substantially adds value to the current risk assessment and prioritization literature that significantly affects service quality.
Details
Keywords
Satyajit Mahato and Supriyo Roy
Managing project completion within the stipulated time is significant to all firms' sustainability. Especially for software start-up firms, it is of utmost importance. For any…
Abstract
Purpose
Managing project completion within the stipulated time is significant to all firms' sustainability. Especially for software start-up firms, it is of utmost importance. For any schedule variation, these firms must spend 25 to 40 percent of the development cost reworking quality defects. Significantly, the existing literature does not support defect rework opportunities under quality aspects among Indian IT start-ups. The present study aims to fill this niche by proposing a unique mathematical model of the defect rework aligned with the Six Sigma quality approach.
Design/methodology/approach
An optimization model was formulated, comprising the two objectives: rework “time” and rework “cost.” A case study was developed in relevance, and for the model solution, we used MATLAB and an elitist, Nondominated Sorting Genetic Algorithm (NSGA-II).
Findings
The output of the proposed approach reduced the “time” by 31 percent at a minimum “cost”. The derived “Pareto Optimal” front can be used to estimate the “cost” for a pre-determined rework “time” and vice versa, thus adding value to the existing literature.
Research limitations/implications
This work has deployed a decision tree for defect prediction, but it is often criticized for overfitting. This is one of the limitations of this paper. Apart from this, comparing the predicted defect count with other prediction models hasn’t been attempted. NSGA-II has been applied to solve the optimization problem; however, the optimal results obtained have yet to be compared with other algorithms. Further study is envisaged.
Practical implications
The Pareto front provides an effective visual aid for managers to compare multiple strategies to decide the best possible rework “cost” and “time” for their projects. It is beneficial for cost-sensitive start-ups to estimate the rework “cost” and “time” to negotiate with their customers effectively.
Originality/value
This paper proposes a novel quality management framework under the Six Sigma approach, which integrates optimization of critical metrics. As part of this study, a unique mathematical model of the software defect rework process was developed (combined with the proposed framework) to obtain the optimal solution for the perennial problem of schedule slippage in the rework process of software development.
Details
Keywords
Swarup Mukherjee, Anupam De and Supriyo Roy
Traditional risk prioritization methods in Enterprise Risk Management (ERM) rely on precise data, which is often not available in real-world contexts. This study addresses the…
Abstract
Purpose
Traditional risk prioritization methods in Enterprise Risk Management (ERM) rely on precise data, which is often not available in real-world contexts. This study addresses the need for a robust model that can handle uncertain and imprecise information for more accurate risk assessment.
Design/methodology/approach
We propose a group decision-making approach using fuzzy numbers to represent risk attributes and preferences. These are converted into fuzzy risk scores through defuzzification, providing a reliable method for risk ranking.
Findings
The proposed fuzzy risk prioritization framework improves decision-making and risk awareness in businesses. It offers a more accurate and robust ranking of enterprise risks, enhancing control and performance in supply chain operations by effectively representing uncertainty and accommodating multiple decision-makers.
Practical implications
The adoption of this fuzzy risk prioritization framework can lead to significant improvements in enterprise risk management across various industries. By accommodating uncertainty and multiple decision-makers, organizations can achieve more reliable risk assessments, ultimately enhancing operational efficiency and strategic decision-making. This model serves as a guide for firms seeking to refine their risk management processes under conditions of imprecise information.
Originality/value
This study introduces a novel weighted fuzzy Risk Priority Number method validated in the risk management process of an integrated steel plant. It is the first to apply this fuzzy approach in the steel industry, demonstrating its practical effectiveness under imprecise information. The results contribute significantly to risk assessment literature and provide a benchmarking tool for improving ERM practices.
Details