Search results
1 – 3 of 3Joseph Nockels, Paul Gooding and Melissa Terras
This paper focuses on image-to-text manuscript processing through Handwritten Text Recognition (HTR), a Machine Learning (ML) approach enabled by Artificial Intelligence (AI)…
Abstract
Purpose
This paper focuses on image-to-text manuscript processing through Handwritten Text Recognition (HTR), a Machine Learning (ML) approach enabled by Artificial Intelligence (AI). With HTR now achieving high levels of accuracy, we consider its potential impact on our near-future information environment and knowledge of the past.
Design/methodology/approach
In undertaking a more constructivist analysis, we identified gaps in the current literature through a Grounded Theory Method (GTM). This guided an iterative process of concept mapping through writing sprints in workshop settings. We identified, explored and confirmed themes through group discussion and a further interrogation of relevant literature, until reaching saturation.
Findings
Catalogued as part of our GTM, 120 published texts underpin this paper. We found that HTR facilitates accurate transcription and dataset cleaning, while facilitating access to a variety of historical material. HTR contributes to a virtuous cycle of dataset production and can inform the development of online cataloguing. However, current limitations include dependency on digitisation pipelines, potential archival history omission and entrenchment of bias. We also cite near-future HTR considerations. These include encouraging open access, integrating advanced AI processes and metadata extraction; legal and moral issues surrounding copyright and data ethics; crediting individuals’ transcription contributions and HTR’s environmental costs.
Originality/value
Our research produces a set of best practice recommendations for researchers, data providers and memory institutions, surrounding HTR use. This forms an initial, though not comprehensive, blueprint for directing future HTR research. In pursuing this, the narrative that HTR’s speed and efficiency will simply transform scholarship in archives is deconstructed.
Details
Keywords
Anas Shehadeh, Sharyn Hunter and Sarah Jeong
This study aims to describe the current conceptualisation of self-management of dementia by family carers in the literature and from the views of dementia professionals and family…
Abstract
Purpose
This study aims to describe the current conceptualisation of self-management of dementia by family carers in the literature and from the views of dementia professionals and family carers, and to establish a more comprehensive concept of self-management of dementia by family carers.
Design/methodology/approach
A hybrid concept analysis included three phases: the theoretical phase reviewed the literature on self-management of dementia by family carers; the fieldwork phase interviewed professionals and family carers; and the analytical phase synthesised and discussed the findings from the previous two phases.
Findings
The findings revealed that self-management of dementia by family carers encompasses four domains: supporting care recipients, self-care, sustaining a positive relationship with care recipients, and personal characteristics and skills.
Originality/value
The findings highlighted the essential elements of the construct of self-management of dementia by family carers. The findings can be used as a conceptual framework of self-management and are useful in designing and evaluating self-management support interventions for family carers.
Details
Keywords
Managers must make numerous strategic decisions in order to initiate and implement a business model innovation (BMI). This paper examines how managers perceive the management team…
Abstract
Purpose
Managers must make numerous strategic decisions in order to initiate and implement a business model innovation (BMI). This paper examines how managers perceive the management team interacts when making BMI decisions. The paper also investigates how group biases and board members’ risk willingness affect this process.
Design/methodology/approach
Empirical data were collected through 26 in-depth interviews with German managing directors from 13 companies in four industries (mobility, manufacturing, healthcare and energy) to explore three research questions: (1) What group effects are prevalent in BMI group decision-making? (2) What are the key characteristics of BMI group decisions? And (3) what are the potential relationships between BMI group decision-making and managers' risk willingness? A thematic analysis based on Gioia's guidelines was conducted to identify themes in the comprehensive dataset.
Findings
First, the results show four typical group biases in BMI group decisions: Groupthink, social influence, hidden profile and group polarization. Findings show that the hidden profile paradigm and groupthink theory are essential in the context of BMI decisions. Second, we developed a BMI decision matrix, including the following key characteristics of BMI group decision-making managerial cohesion, conflict readiness and information- and emotion-based decision behavior. Third, in contrast to previous literature, we found that individual risk aversion can improve the quality of BMI decisions.
Practical implications
This paper provides managers with an opportunity to become aware of group biases that may impede their strategic BMI decisions. Specifically, it points out that managers should consider the key cognitive constraints due to their interactions when making BMI decisions. This work also highlights the importance of risk-averse decision-makers on boards.
Originality/value
This qualitative study contributes to the literature on decision-making by revealing key cognitive group biases in strategic decision-making. This study also enriches the behavioral science research stream of the BMI literature by attributing a critical influence on the quality of BMI decisions to managers' group interactions. In addition, this article provides new perspectives on managers' risk aversion in strategic decision-making.
Details