Search results

1 – 10 of 259
Open Access
Article
Publication date: 23 September 2024

Prabhugouda Mallanagouda Patil, Bharath Goudar and Ebrahim Momoniat

Many industries use non-Newtonian ternary hybrid nanofluids (THNF) because of how well they control rheological and heat transport. This being the case, this paper aims to…

Abstract

Purpose

Many industries use non-Newtonian ternary hybrid nanofluids (THNF) because of how well they control rheological and heat transport. This being the case, this paper aims to numerically study the Casson-Williamson THNF flow over a yawed cylinder, considering the effects of several slips and an inclined magnetic field. The THNF comprises Al2O3-TiO2-SiO2 nanoparticles because they improve heat transmission due to large thermal conductivity.

Design/methodology/approach

Applying suitable nonsimilarity variables transforms the coupled highly dimensional nonlinear partial differential equations (PDEs) into a system of nondimensional PDEs. To accomplish the goal of achieving the solution, an implicit finite difference approach is used in conjunction with Quasilinearization. With the assistance of a script written in MATLAB, the numerical results and the graphical representation of those solutions were ascertained.

Findings

As the Casson parameter β increases, there is an improvement in the velocity profiles in both chord and span orientations, while the gradients Re1/2Cf,Re1/2C¯f reduce for the same variations of β. The velocities of Casson THNF are greater than those of Casson-Williamson THNF. Approximately, a 202% and a 32% ascension are remarked in the magnitudes of Re1/2Cf and Re1/2C¯f for Casson-Williamson THNF than the Casson THNF only. When velocity slip attribute S1 jumps to 1 from 0.5, magnitude of both F(ξ,η) and Re1/2Cf fell down and it is reflected to be 396% at ξ=1, Wi=1 and β=1. An augmentation in thermal jump results in advanced fluid temperature and lower Re1/2Nu. In particular, about 159% of down drift is detected when S2 taking 1.

Originality/value

There is no existing research on the effects of Casson-Williamson THNF flow over a yawed cylinder with multiple slips and an angled magnetic field, according to the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 June 2022

Shubangini Patil and Rekha Patil

Until now, a lot of research has been done and applied to provide security and original data from one user to another, such as third-party auditing and several schemes for…

Abstract

Purpose

Until now, a lot of research has been done and applied to provide security and original data from one user to another, such as third-party auditing and several schemes for securing the data, such as the generation of the key with the help of encryption algorithms like Rivest–Shamir–Adleman and others. Here are some of the related works that have been done previously. Remote damage control resuscitation (RDCR) scheme by Yan et al. (2017) is proposed based on the minimum bandwidth. By enabling the third party to perform the verification of public integrity. Although it supports the repair management for the corrupt data and tries to recover the original data, in practicality it fails to do so, and thus it takes more computation and communication cost than our proposed system. In a paper by Chen et al. (2015), using broadcast encryption, an idea for cloud storage data sharing has been developed. This technique aims to accomplish both broadcast data and dynamic sharing, allowing users to join and leave a group without affecting the electronic press kit (EPK). In this case, the theoretical notion was true and new, but the system’s practicality and efficiency were not acceptable, and the system’s security was also jeopardised because it proposed adding a member without altering any keys. In this research, an identity-based encryption strategy for data sharing was investigated, as well as key management and metadata techniques to improve model security (Jiang and Guo, 2017). The forward and reverse ciphertext security is supplied here. However, it is more difficult to put into practice, and one of its limitations is that it can only be used for very large amounts of cloud storage. Here, it extends support for dynamic data modification by batch auditing. The important feature of the secure and efficient privacy preserving provable data possession in cloud storage scheme was to support every important feature which includes data dynamics, privacy preservation, batch auditing and blockers verification for an untrusted and an outsourced storage model (Pathare and Chouragadec, 2017). A homomorphic signature mechanism was devised to prevent the usage of the public key certificate, which was based on the new id. This signature system was shown to be resistant to the id attack on the random oracle model and the assault of forged message (Nayak and Tripathy, 2018; Lin et al., 2017). When storing data in a public cloud, one issue is that the data owner must give an enormous number of keys to the users in order for them to access the files. At this place, the knowledge assisted software engineering (KASE) plan was publicly unveiled for the first time. While sharing a huge number of documents, the data owner simply has to supply the specific key to the user, and the user only needs to provide the single trapdoor. Although the concept is innovative, the KASE technique does not apply to the increasingly common manufactured cloud. Cui et al. (2016) claim that as the amount of data grows, distribution management system (DMS) will be unable to handle it. As a result, various proven data possession (PDP) schemes have been developed, and practically all data lacks security. So, here in these certificates, PDP was introduced, which was based on bilinear pairing. Because of its feature of being robust as well as efficient, this is mostly applicable in DMS. The main purpose of this research is to design and implement a secure cloud infrastructure for sharing group data. This research provides an efficient and secure protocol for multiple user data in the cloud, allowing many users to easily share data.

Design/methodology/approach

The methodology and contribution of this paper is given as follows. The major goal of this study is to design and implement a secure cloud infrastructure for sharing group data. This study provides an efficient and secure protocol for multiple user data in cloud, allowing several users to share data without difficulty. The primary purpose of this research is to design and implement a secure cloud infrastructure for sharing group data. This research develops an efficient and secure protocol for multiple user data in the cloud, allowing numerous users to exchange data without difficulty. Selection scheme design (SSD) comprises two algorithms; first algorithm is designed for limited users and algorithm 2 is redesigned for the multiple users. Further, the authors design SSD-security protocol which comprises a three-phase model, namely, Phase 1, Phase 2 and Phase 3. Phase 1 generates the parameters and distributes the private key, the second phase generates the general key for all the users that are available and third phase is designed to prevent the dishonest user to entertain in data sharing.

Findings

Data sharing in cloud computing provides unlimited computational resources and storage to enterprise and individuals; moreover, cloud computing leads to several privacy and security concerns such as fault tolerance, reliability, confidentiality and data integrity. Furthermore, the key consensus mechanism is fundamental cryptographic primitive for secure communication; moreover, motivated by this phenomenon, the authors developed SSDmechanismwhich embraces the multiple users in the data-sharing model.

Originality/value

Files shared in the cloud should be encrypted for security purpose; later these files are decrypted for the users to access the file. Furthermore, the key consensus process is a crucial cryptographic primitive for secure communication; additionally, the authors devised the SSD mechanism, which incorporates numerous users in the data-sharing model, as a result of this phenomena. For evaluation of the SSD method, the authors have considered the ideal environment of the system, that is, the authors have used java as a programming language and eclipse as the integrated drive electronics tool for the proposed model evaluation. Hardware configuration of the model is such that it is packed with 4 GB RAM and i7 processor, the authors have used the PBC library for the pairing operations (PBC Library, 2022). Furthermore, in the following section of this paper, the number of users is varied to compare with the existing methodology RDIC (Li et al., 2020). For the purposes of the SSD-security protocol, a prime number is chosen as the number of users in this work.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 4
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 29 October 2024

Sandeep Sathe, Sudhir Patil and Yash Nagesh Bhosale

Cement plays a significant part in concrete, and with the increasing demand for concrete, cement output varies day by day, allowing production to carbon dioxide emissions. As well…

Abstract

Purpose

Cement plays a significant part in concrete, and with the increasing demand for concrete, cement output varies day by day, allowing production to carbon dioxide emissions. As well as marble processing creates stone slurry and solid discards. These are often dumped irresponsibly on open land, polluting the soil. This improper disposal of marble waste is a major environmental concern. This study aims to propose a sustainable solution for reusing this waste material as a concrete additive.

Design/methodology/approach

A total of 135 concrete cubes of size 150 × 150 × 150 mm, 54 concrete cylinders of size 150 mm dia. and 300 mm height and 54 concrete beams of size 150 × 150 × 700 mm were cast. The replacement was 0%, 2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 17.5% and 20% by weight of cement with marble dust to create M30 concrete with a water-cement ratio of 0.45. The test was performed to find the compressive strength (CS), flexural strength (FS) and split tensile strength. Also, durability tests like rapid chloride penetration test (RCPT), acid attack, ultrasonic pulse velocity (UPV) and water permeability test were performed.

Findings

After 7 and 28 days of curing, it was found that replacing 5% of cement with marble powder led to an initial strength improvement of up to 25% for both curing periods. However, further increases in marble dust resulted in an inconsistent decrease in strength for all the mixtures. Also, durability properties like acid attack test, water permeability test and RCPT, showed good performance at the optimum percentage of waste marble powder (WMP) as cement replacement. The microscopic analysis revealed a denser pore structure at lower WMP replacement levels, likely due to the powder filling in gaps.

Originality/value

This study reveals that by substituting 5% (optimum) of cement with WMP, there was CS improvement up to 8.4% and 17% for both 7 and 28 days of curing. WMP is typically finer than cement particles and fills the voids in the concrete more effectively, resulting best performance at optimum percentage against RCPT, UPV, acid attack and water permeability.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 September 2024

Ashish Arunrao Desai and Subim Khan

The investigation aims to improve Nd: YAG laser technology for precision cutting of carbon fiber reinforcing polymers (CFRPs), specifically those containing newly created resin…

Abstract

Purpose

The investigation aims to improve Nd: YAG laser technology for precision cutting of carbon fiber reinforcing polymers (CFRPs), specifically those containing newly created resin (NDR) from the polyethylene and polyurea group, is the goal of the study. The focus is on showing how Nd: YAG lasers may be used to precisely cut CFRP with NDR materials, emphasizing how useful they are for creating intricate and long-lasting components.

Design/methodology/approach

The study employs a systematic approach that includes complicated factorial designs, Taguchi L27 orthogonal array trials, Gray relational analysis (GRA) and machine learning predictions. The effects of laser cutting factors on CFRP with NDR geometry are investigated experimentally, with the goal of optimizing the cutting process for greater quality and efficiency. The approach employs data-driven decision-making with GRA, which improves cut quality and manufacturing efficiency while producing high-quality CFRP composites. Integration of machine learning models into the optimization process significantly boosts the precision and cost-effectiveness of laser cutting operations for CFRP materials.

Findings

The work uses Taguchi L27 orthogonal array trials for systematically explore the effects of specified parameters on CFRP cutting. The cutting process is then optimized using GRA, which identifies influential elements and determines the ideal parameter combination. In this paper, initially machining parameters are established at level L3P3C3A2, and the optimal machining parameters are determined to be at levels L3P2C3A3 and L3P2C1A2, based on predictions and experimental results. Furthermore, the study uses machine learning prediction models to continuously update and optimize kerf parameters, resulting in high-quality cuts at a lower cost. Overall, the study presents a holistic method to optimize CFRP cutting processes employing sophisticated techniques such as GRA and machine learning, resulting in better quality and efficiency in manufacturing operations.

Originality/value

The novel concept is in precisely measuring the kerf width and deviation in CFRP samples of NDR using sophisticated imaging techniques like SEM, which improves analysis and precision. The newly produced resin from the polyethylene and polyurea group with carbon fiber offers a more precise and comprehensive understanding of the material's behavior under different cutting settings, which makes it novel for kerf width and kerf deviation in their studies. To optimize laser cutting settings in real time while considering laser machining conditions, the study incorporates material insights into machine learning models.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 October 2024

Sandeep Sathe, Shahbaz Dandin, Makrand Wagale and Pankaj R. Mali

This study aims to investigate and compare the influence of various fiber types (polypropylene, steel and glass) on the workability, mechanical properties, ductility, impact…

Abstract

Purpose

This study aims to investigate and compare the influence of various fiber types (polypropylene, steel and glass) on the workability, mechanical properties, ductility, impact resistance, durability and microscopic properties of geopolymer concrete (GPC) with conventional concrete (CC).

Design/methodology/approach

The CC and GPC of M40 grade were incorporated with an optimum 1% of fibers and superplasticizers were added in a ratio of 2% by weight of the geopolymer binder. The slump cone and compaction factor tests were performed to analyze the workability. To evaluate the mechanical performance of GPC, the compressive strength (CS), split tensile strength (STS), flexural strength (FS) and modulus of elasticity (MOE) tests were performed. A falling weight impact test was performed to determine the impact energy (IE) absorbed, the number of blows for initial cracking, the number of blows for complete failure and the ductility aspect.

Findings

Fibers and superplasticizers significantly improve GPC properties. The study found that fibers reduce the brittleness of concrete, improving the impact and mechanical strength compared to similar-grade CC. The steel fibers-reinforced GPC has a 15.42% higher CS than CC after three days, showing a faster CS gain. After 28 days, GPC and CC have MOE in the range of 23.9–25.5 GPa and 28.8–30.9 GPa, respectively. The ultimate IE of the GPC with fibers was found to be 5.43% to 21.17% higher than GPC without fibers.

Originality/value

The findings of the study can be used to explore different combinations of raw materials and mix designs to optimize the performance of GPC.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 July 2023

Brajesh Mishra, Avanish Kumar and Ishaan Mishra

The study explores the evolution of Indian domestic electronics manufacturing post-economic reforms and also investigates the lack of natural growth stages among Indian…

Abstract

Purpose

The study explores the evolution of Indian domestic electronics manufacturing post-economic reforms and also investigates the lack of natural growth stages among Indian start-up/SME electronics manufactures.

Design/methodology/approach

The theoretical framework is inspired by Dawar and Frost's survival strategy theory that local companies may follow to overcome competitive threats from MNCs. The study adopts a qualitative methodology, more precisely, a phenomenological approach to walking through policy/regulatory reforms amid market distortions, technological gaps and colonial mindset from the perspective of Indian domestic electronics manufacturers. The study has adopted Gioia method of data analysis to inductively suggest a few research propositions.

Findings

The phenomenological approach revealed eight essential structure (essence) narratives to explore the complex issue that plague the industry: make in India, made in India, preferential market access strategy, equitable market access strategy, blue ocean strategy, competitive positioning strategy, technical capability and importance of policy/regulatory arbitrage.

Practical implications

The situation of Indian electronics manufacturing units is comparable to the bonsai tree situation, where natural evolution in business stages does not exist; they are born and die as start-ups/MSMEs. The study advocates for equitable market access by removing market distortions. The long-term solution may lie in making available locally manufactured products as a dependable alternative to the imported products or produced locally by MNC OEMs in terms of cost, quality, technology, volume, after-sale service and integrated supply chain.

Originality/value

While the favorable FDI policies, digital India and make-in India initiatives have strengthened domestic electronics production, it is yet to significantly impact India's position in global trade, including manufacturing and exports.

Details

Benchmarking: An International Journal, vol. 31 no. 8
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 22 August 2023

Diego A. de J. Pacheco, Rodrigo Veleda Caetano, Samuel Vinícius Bonato, Bruno Miranda dos Santos and Wagner Pietrobelli Bueno

Small retail stores in the luxury market face significant challenges due to fluctuations in market demand. This task turns challenging as it requires effectively coordinating and…

Abstract

Purpose

Small retail stores in the luxury market face significant challenges due to fluctuations in market demand. This task turns challenging as it requires effectively coordinating and translating customer needs into specific requirements that align with retail goals and available resources. However, limited empirical research exists investigating how managers can address service value and quality attributes in small retail stores. This article aims to bridge this gap by investigating the role of quality function deployment (QFD) in improving market and quality requirements management in small retail stores.

Design/methodology/approach

Based on the case study, a customer survey was initially conducted to gather information on critical characteristics valued in the luxury retail segment. QFD was used to assist the company in identifying and prioritizing key quality attributes to meet customer requirements effectively.

Findings

The findings demonstrate that implementing QFD in small luxury retail stores empowers managers to identify previously neglected product and service quality aspects. The article shows that QFD informs organizational adaptations that align with the demands of the retail market, leading to an improved ability to meet customer expectations and enhance customer value through the development of enhanced products and services. The study showcases the efficacy of the tested methodology in effectively capturing and prioritizing both tangible and intangible customer needs in retail.

Practical implications

Findings offer valuable insights to retail managers of small luxury stores, providing actionable market-oriented strategies. By implementing the recommended practices, managers can improve the store’s competitiveness and better cater to the customer base.

Originality/value

This study contributes to bridging persistent knowledge gaps by addressing the unique context of small luxury retail stores and introducing the application of QFD in this setting. The insights gained from this research are relevant to both retailing and quality management literature. Considering the growing prevalence of transformations in the retail industry, the study provides practical implications for retail managers in effectively navigating these changes.

Details

Benchmarking: An International Journal, vol. 31 no. 8
Type: Research Article
ISSN: 1463-5771

Keywords

Open Access
Article
Publication date: 12 April 2024

Aleš Zebec and Mojca Indihar Štemberger

Although businesses continue to take up artificial intelligence (AI), concerns remain that companies are not realising the full value of their investments. The study aims to…

3413

Abstract

Purpose

Although businesses continue to take up artificial intelligence (AI), concerns remain that companies are not realising the full value of their investments. The study aims to provide insights into how AI creates business value by investigating the mediating role of Business Process Management (BPM) capabilities.

Design/methodology/approach

The integrative model of IT Business Value was contextualised, and structural equation modelling was applied to validate the proposed serial multiple mediation model using a sample of 448 organisations based in the EU.

Findings

The results validate the proposed serial multiple mediation model according to which AI adoption increases organisational performance through decision-making and business process performance. Process automation, organisational learning and process innovation are significant complementary partial mediators, thereby shedding light on how AI creates business value.

Research limitations/implications

In pursuing a complex nomological framework, multiple perspectives on realising business value from AI investments were incorporated. Several moderators presenting complementary organisational resources (e.g. culture, digital maturity, BPM maturity) could be included to identify behaviour in more complex relationships. The ethical and moral issues surrounding AI and its use could also be examined.

Practical implications

The provided insights can help guide organisations towards the most promising AI activities of process automation with AI-enabled decision-making, organisational learning and process innovation to yield business value.

Originality/value

While previous research assumed a moderated relationship, this study extends the growing literature on AI business value by empirically investigating a comprehensive nomological network that links AI adoption to organisational performance in a BPM setting.

Article
Publication date: 1 February 2024

Vishal Singh and Arvind K. Rajput

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal…

Abstract

Purpose

The present paper aims to analyse the synergistic effect of pocket orientation and piezo-viscous-polar (PVP) lubrication on the performance of multi-recessed hybrid journal bearing (MHJB) system.

Design/methodology/approach

To simulate the behaviour of PVP lubricant in clearance space of the MHJB system, the modified form of Reynolds equation is numerically solved by using finite element method. Galerkin’s method is used to obtain the weak form of the governing equation. The system equation is solved by Gauss–Seidal iterative method to compute the unknown values of nodal oil film pressure. Subsequently, performance characteristics of bearing system are computed.

Findings

The simulated results reveal that the location of pressurised lubricant inlets significantly affects the oil film pressure distribution and may cause a significant effect on the characteristics of bearing system. Further, the use of PVP lubricant may significantly enhances the performance of the bearing system, namely.

Originality/value

The present work examines the influence of pocket orientation with respect to loading direction on the characteristics of PVP fluid lubricated MHJB system and provides vital information regarding the design of journal bearing system.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0241/

Details

Industrial Lubrication and Tribology, vol. 76 no. 7/8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 April 2024

Richard Kadan, Temitope Seun Omotayo, Prince Boateng, Gabriel Nani and Mark Wilson

This study aimed to address a gap in subcontractor management by focusing on previously unexplored complexities surrounding subcontractor management in developing countries. While…

Abstract

Purpose

This study aimed to address a gap in subcontractor management by focusing on previously unexplored complexities surrounding subcontractor management in developing countries. While past studies concentrated on selection and relationships, this study delved into how effective subcontractor management impacts project success.

Design/methodology/approach

This study used the Bayesian Network analysis approach, through a meticulously developed questionnaire survey refined through a piloting stage involving experienced industry professionals. The survey was ultimately distributed among participants based in Accra, Ghana, resulting in a response rate of approximately 63%.

Findings

The research identified diverse components contributing to subcontractor disruptions, highlighted the necessity of a clear regulatory framework, emphasized the impact of financial and leadership assessments on performance, and underscored the crucial role of main contractors in Integrated Project and Labour Cost Management with Subcontractor Oversight and Coordination.

Originality/value

Previous studies have not considered the challenges subcontractors face in projects. This investigation bridges this gap from multiple perspectives, using Bayesian network analysis to enhance subcontractor management, thereby contributing to the successful completion of construction projects.

Details

Journal of Financial Management of Property and Construction , vol. 29 no. 3
Type: Research Article
ISSN: 1366-4387

Keywords

1 – 10 of 259