Search results

1 – 1 of 1
Article
Publication date: 12 September 2024

Tunay Turk, Cesar E. Dominguez, Austin T. Sutton, John D. Bernardin, Jonghyun Park and Ming C. Leu

This paper aims to present spot pattern welding (SPW) as a scanning strategy for laser-foil-printing (LFP) additive manufacturing (AM) in place of the previously used continuous…

Abstract

Purpose

This paper aims to present spot pattern welding (SPW) as a scanning strategy for laser-foil-printing (LFP) additive manufacturing (AM) in place of the previously used continuous pattern welding (CPW) (line-raster scanning). The SPW strategy involves generating a sequence of overlapping spot welds on the metal foil, allowing the laser to form dense and uniform weld beads. This in turn reduces thermal gradients, promotes material consolidation and helps mitigate process-related risks such as thermal cracking, porosity, keyholing and Marangoni effects.

Design/methodology/approach

304L stainless steel (SS) feedstock is used to fabricate test specimens using the LFP system. Imaging techniques are used to examine the melt pool dimensions and layer bonding. In addition, the parts are evaluated for residual stresses, mechanical strength and grain size.

Findings

Compared to CPW, SPW provides a more reliable heating/cooling relationship that is less dependent on part geometry. The overlapping spot welds distribute heat more evenly, minimizing the risk of elevated temperatures during the AM process. In addition, the resulting dense and uniform weld beads contribute to lower residual stresses in the printed part.

Originality/value

To the best of the authors’ knowledge, this is the first study to thoroughly investigate SPW as a scanning strategy using the LFP process. In general, SPW presents a promising strategy for securing embedded sensors into LFP parts while minimizing residual stresses.

Details

Rapid Prototyping Journal, vol. 31 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

Last 3 months (1)

Content type

1 – 1 of 1