Search results

1 – 1 of 1
Article
Publication date: 14 June 2024

Xiangting Chu, Jian Gao, Hongdou Zhang, Huiwen Lu, Xinjin Liu and Xuzhong Su

Through the tracer fiber method, we strive to more accurately obtain the hook degree, straightening degree, percentage and other characteristic indexes. In order to intuitively…

Abstract

Purpose

Through the tracer fiber method, we strive to more accurately obtain the hook degree, straightening degree, percentage and other characteristic indexes. In order to intuitively represent the hook state from sliver to yarn, and feed back production information in combination with quality test.

Design/methodology/approach

Taking the cotton fiber as an example, the hooked fibers were studied by using the tracer fiber method. Tracer fibers were made from cotton-type viscose fibers. Tracer fibers and combed cotton fibers were uniformly mixed for many times and used to produce the card sliver, semi-drawn sliver, drawn sliver, roving and yarn. With the help of ZF-20D ultraviolet analyzer, geometric parameters of hooked fibers were measured, and characterization indexes were calculated. And hook indexes and quality indexes were compared.

Findings

By redefining and reclassifying hooked fibers, the change of hooked fibers in the process was tracked and characterized carefully. Some hooks in card sliver are straightened but not eliminated, and will form longer zero-angled hooks in the subsequent process. The straightening degree and number of zero-angled hooks affect the evenness CV mainly.

Originality/value

The characterization of hooked fibers is important for reducing hooked fibers and spinning high quality yarns. There is no uniform standard for the characterization of hooked fibers at present. Most studies are about relationship between process and hook in carding and drawing. There is no research on hooked fibers in the whole spinning process. In the paper, hooked fibers were redefined and reclassified, the change of hooked fibers in the process was tracked and characterized carefully.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Access

Year

Last 3 months (1)

Content type

1 – 1 of 1