Search results

1 – 2 of 2
Open Access
Article
Publication date: 11 October 2024

Sintayehu Alemayehu, Daniel Olago, Opere Alfred, Tadesse Terefe Zeleke and Sintayehu W. Dejene

The purpose of this study is to analyze the seasonal spatiotemporal climate variability in the Borena zone of Ethiopia and its effects on agriculture and livestock production. By…

Abstract

Purpose

The purpose of this study is to analyze the seasonal spatiotemporal climate variability in the Borena zone of Ethiopia and its effects on agriculture and livestock production. By examining these climate variables in relation to global sea surface temperatures (SST) and atmospheric pressure systems, the study seeks to understand the underlying mechanisms driving local climate variability. Furthermore, it assesses how these climate variations impact crop yields, particularly wheat and livestock production, providing valuable insights for developing effective adaptation strategies and policies to enhance food security and economic stability in the region.

Design/methodology/approach

The design and methodology of this study involve a multifaceted approach to analyzing seasonal spatiotemporal climate variability in the Borena zone of Ethiopia. The research uses advanced statistical techniques, including rotated empirical orthogonal function (EOF) and rotated principal component analysis (RPCA), to identify and quantify significant patterns in seasonal rainfall, temperature and drought indices over the period from 1981 to 2022. These methods are used to reveal the spatiotemporal variations and trends in climate variables. To understand the causal mechanisms behind these variations, the study correlates seasonal rainfall data with global SST and examines atmospheric pressure systems and wind vectors. In addition, the impact of climate variability on agricultural and livestock production is assessed by linking observed climate patterns with changes in crop yields, particularly wheat and livestock productivity. This comprehensive approach integrates statistical analysis with environmental and agricultural data to provide a detailed understanding of climate dynamics and their practical implications.

Findings

The findings of this study reveal significant seasonal spatiotemporal climate variability in the Borena zone of Ethiopia, characterized by notable patterns and trends in rainfall, temperature and drought indices from 1981 to 2022. The analysis identified that over 84% of the annual rainfall occurs during the March to May (MAM) and September to November (SON) seasons, with MAM contributing approximately 53% and SON over 31%, highlighting these as the primary rainfall periods. Significant spatiotemporal variations were observed, with northwestern (35.4%), southern (34.9%) and northeastern (19.3%) are dominant variability parts of the zone during MAM season, similarly southeastern (48.7%), and northcentral (37.8%) are dominant variability parts of the zone during SON season. Trends indicating that certain subregions experience more pronounced changes in climate variables in both seasons. Correlation with global SST and an examination of atmospheric pressure systems elucidated the mechanisms driving these variations, with significant correlation with the southern and central part of Indian Ocean. This study also found that fluctuations in climate variables significantly impact crop production, particularly wheat and livestock productivity in the region, underscoring the need for adaptive strategies to mitigate adverse effects on agriculture and food security.

Research limitations/implications

The implications of this study highlight the need for robust adaptation strategies to mitigate the effects of climate variability. Detailed research on seasonal climate patterns and the specific behaviors of livestock and crops is essential. Gaining a thorough understanding of these dynamics is critical for developing resilient adaptation strategies tailored to the unique ecological and economic context of the Borana zone. Future research should focus on seasonal climate variations and their implications to guide sustainable development and livelihood adjustments in the region.

Originality/value

This study offers significant originality and value by providing a detailed analysis of seasonal spatiotemporal climate variability in the Borena zone of Ethiopia, using advanced statistical techniques such as rotated EOF and RPCA. By integrating these methods with global SST data and atmospheric pressure systems, the research delivers a nuanced understanding of how global climatic factors influence local weather patterns. The study’s novel approach not only identifies key trends and patterns in climate variables over an extensive historical period but also links these findings to practical outcomes in crop and livestock production. This connection is crucial for developing targeted adaptation strategies and policies, thereby offering actionable insights for enhancing agricultural practices and food security in the region. The originality of this work lies in its comprehensive analysis and practical relevance, making it a valuable contribution to both climate science and regional agricultural planning.

Details

International Journal of Climate Change Strategies and Management, vol. 17 no. 1
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 29 January 2025

Alefu Chinasho, Bobe Bedadi, Tesfaye Lemma, Tamado Tana, Bisrat Elias and Tilahun Hordofa

This study aims to analyze the temperature variability and change for the past 30 years (1990–2019) and the future 60 years (2030s, 2050s and 2070s) in Wolaita Zone and the…

Abstract

Purpose

This study aims to analyze the temperature variability and change for the past 30 years (1990–2019) and the future 60 years (2030s, 2050s and 2070s) in Wolaita Zone and the surroundings, in Southern Ethiopia.

Design/methodology/approach

The temperature (maximum and minimum) data of the past 30 years (1990–2019) of ten meteorological stations and the future (2021–2080) data of regional climate models (RCMs) under two representative concentration pathways (RCP4.5 and RCP8.5) were used in this study. The accuracy of RCMs in representing observed temperature data was evaluated against mean absolute error, root-mean-square error, percent bias, Nash–Sutcliffe measure of efficiency, index of agreement (d) and coefficient of determination (R2). The temperature variability was analyzed using the coefficient of variation, and the trend was determined using the Mann–Kendall trend and Sen’s slope tests.

Findings

The results indicate that the past maximum (Tmax) and minimum (Tmin) temperatures showed low variability (CV = 4.3%) with consistently increasing trends. Similarly, Tmax and Tmin are projected to have low variability in the future years, with upward trends. The Tmax and Tmin are projected to deviate by 0.7°C–1.2°C, 1.3°C–2.2°C and 1.5°C–3.2°C by 2030s, 2050s and 2070s, respectively, under RCP4.5 and RCP8.5, from the baseline. Thus, it can be concluded that temperature has low variability in all periods, with consistently increasing trends. The increasing temperature could have been affecting agricultural production systems in Southern Ethiopia.

Research limitations/implications

This research did not remove the uncertainties of models (inherited errors of models) in future temperature projections. However, this study did not have any limitation. Therefore, individuals or organizations working on agricultural productivity, food security and sustainable development can use the results and recommendations.

Practical implications

The globe has been warming due to the increasing temperature; as a result, many adaptation and mitigation measures have been suggested globally and nationally (IPCC, 2021). FAO (2017) indicates that the level of vulnerability to the impacts of climate change varies with geographic location, economy and demography; the adaptation measures need to be local. The detailed information on temperature variability and change in the past and future helps to understand the associated negative impacts on agriculture, hydrology, biodiversity, environment and human well-being, among others.

Social implications

The projected future climate pattern helps the country devise proactive adaptation and mitigation measures for the associated damages at different levels (from local to national). This could improve the resilience of farmers and the country to climate change impacts. This contributes to achieving sustainable development goals (e.g. no poverty, zero hunger and climate action). This is because the agriculture sector in Ethiopia accounts for 80% of employment, 33% of the gross domestic product and 76% of exports (EPRSS, 2023).

Originality/value

Temperature is one of the major climate elements affecting agricultural production in rain-fed production systems. Despite this, past studies in Southern Ethiopia considered only the past temperature but not the future climate. Thus, generating detailed information about past and future temperatures is very important to take proactive adaptation measures for reducing climate-associated damages in the agriculture sector in Ethiopia.

Details

International Journal of Climate Change Strategies and Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-8692

Keywords

1 – 2 of 2