Search results

1 – 10 of 21
Article
Publication date: 5 August 2024

Christopher Igwe Idumah, Raphael Stone Odera and Emmanuel Obumneme Ezeani

Nanotechnology (NT) advancements in personal protective textiles (PPT) or personal protective equipment (PPE) have alleviated spread and transmission of this highly contagious…

Abstract

Purpose

Nanotechnology (NT) advancements in personal protective textiles (PPT) or personal protective equipment (PPE) have alleviated spread and transmission of this highly contagious viral disease, and enabled enhancement of PPE, thereby fortifying antiviral behavior.

Design/methodology/approach

Review of a series of state of the art research papers on the subject matter.

Findings

This paper expounds on novel nanotechnological advancements in polymeric textile composites, emerging applications and fight against COVID-19 pandemic.

Research limitations/implications

As a panacea to “public droplet prevention,” textiles have proven to be potentially effective as environmental droplet barriers (EDBs).

Practical implications

PPT in form of healthcare materials including surgical face masks (SFMs), gloves, goggles, respirators, gowns, uniforms, scrub-suits and other apparels play critical role in hindering the spreading of COVID-19 and other “oral-respiratory droplet contamination” both within and outside hospitals.

Social implications

When used as double-layers, textiles display effectiveness as SFMs or surgical-fabrics, which reduces droplet transmission to <10 cm, within circumference of ∼0.3%.

Originality/value

NT advancements in textiles through nanoparticles, and sensor integration within textile materials have enhanced versatile sensory capabilities, robotics, flame retardancy, self-cleaning, electrical conductivity, flexibility and comfort, thereby availing it for health, medical, sporting, advanced engineering, pharmaceuticals, aerospace, military, automobile, food and agricultural applications, and more. Therefore, this paper expounds on recently emerging trends in nanotechnological influence in textiles for engineering and fight against COVID-19 pandemic.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 17 January 2024

Sundeep Singh Sondhi, Prashant Salwan, Abhishek Behl, Suman Niranjan and Tim Hawkins

This paper aims to derive a model that explores how the interplay between knowledge integration capability and innovation impacts strategic orientation, leading to the attainment…

Abstract

Purpose

This paper aims to derive a model that explores how the interplay between knowledge integration capability and innovation impacts strategic orientation, leading to the attainment of sustainable competitive advantage. The study considers the constituents of strategic orientation, namely, customer orientation, competitor orientation and technology orientation, as the basis for achieving sustainable competitive advantage. The study suggests that the firm’s capacity for integrating external and internal knowledge shapes how strategic orientation influences sustainable competitive advantage through service innovation.

Design/methodology/approach

This empirical research relies on qualitative and quantitative data gathered from telecom professionals to assess how knowledge integration and service innovation influence sustained competitive advantage. Structured equation modeling is used to examine the model and its interrelationships.

Findings

The research establishes significant relationships between strategic orientations, knowledge integration capability, service innovation and sustainable competitive advantage. Knowledge integration capability and service innovation are found to mediate the relationship between strategic orientations and the achievement of sustainable competitive advantage.

Practical implications

The study highlights the significant contribution of a firm’s knowledge integration capability in driving service innovation, especially in technology-intensive service industries facing hypercompetition. It also advocates prioritizing technology orientation and integrating knowledge from internal and external sources for competitive advantage.

Originality/value

To the best of the authors’ knowledge, this study is the first to model the effect of knowledge integration capability and service innovation on strategic orientation-led sustainable competitive advantage.

Details

Journal of Knowledge Management, vol. 28 no. 7
Type: Research Article
ISSN: 1367-3270

Keywords

Article
Publication date: 25 November 2024

Ranjeet Rai, Vikash Kumar and R.R. Sahoo

Nowadays fossil fuel prices have increased; therefore, consumption of energy reduction has become a significant issue. Hence, this study aims to explore energy-efficient…

Abstract

Purpose

Nowadays fossil fuel prices have increased; therefore, consumption of energy reduction has become a significant issue. Hence, this study aims to explore energy-efficient mechanical devices and their energy management.

Design/methodology/approach

This study focused on numerical analysis of various factors, including pressure drop, sensitivity, heat transfer and friction factor. This study compared the performance of two different arrangements of the heat exchanger: flat tube and staggered circular tube. This study also investigated the impact of varying coolant volume fractions.

Findings

This numerical analysis compares the geometric properties of flat and circular tube cross-sections while considering the flow of nanofluid inside and air outside. The current experimental investigation specifically examines the temperature-dependent characteristics (specific heat capacity, viscosity, density and thermal conductivity) of the stable ternary hybrid nanofluid mixture composed of Al2O3, CuO and TiO2.

Originality/value

While several researchers have conducted numerical investigations on laminar flow in circular tubes, only a few studies are available on flat tube heat exchangers that use nanofluids just for internal flow. Furthermore, there is no simultaneous study on internal and exterior flow. Therefore, more investigation is necessary to examine the combined three-dimensional examination of shapes and their thermal-hydraulic influence using hybrid nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 November 2024

Xiang Liu, Xinghai Cheng, Pengyu Feng, Jing Li, Zhongping Tang, Jiangbing Wang, Yonggang Chen, Hongjie Zhu, Hengcheng Wan and Lei Zhang

This paper aims to try to develop new, environmentally friendly and efficient lubricating additives; study the compatibility of carbon-based additives with different base oils…

Abstract

Purpose

This paper aims to try to develop new, environmentally friendly and efficient lubricating additives; study the compatibility of carbon-based additives with different base oils [Polyalphaolefin (PAO)-3, PAO-20 and NPE-2]; and explore the lubrication mechanism.

Design/methodology/approach

Oleylamine modified carbon nanoparticles (CNPs-OA) were prepared and the dispersion stability of CNPs-OA in PAO-3, PAO-20 and NPE-2 base oils was investigated by transmission electron microscopy, Fourier transform infrared, thermogravimetric analysis, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. Universal Mechanical Tester (UMT) platform was used to carry out experiments on the effects of different additive concentrations on the lubricating properties of base oil.

Findings

The mean friction coefficient of PAO-3, PAO-20 and NPE-2 reduced by 32.8%, 10.1% and 11.4% when the adding concentration of CNPs-OA was 1.5, 2.0 and 0.5 Wt.%, respectively. Generally, The CNPs-OA exhibited the best friction-reducing and anti-wear performance in PAO-3.

Originality/value

The agglomeration phenomenon of carbon nanoparticles as lubricating additive was improved by surface modification, and the lubricating effect of carbon nanoparticles in three synthetic aviation lubricating base oils was compared.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 November 2024

Huei-Jyun Shih, Ying-Chieh Lee, Jing-Ru Pan and Claire Chung

This study aims to address these challenges by enhancing the resistance of Ag-based pastes to corrosion and sulfurization, thereby improving their performance and weatherability…

Abstract

Purpose

This study aims to address these challenges by enhancing the resistance of Ag-based pastes to corrosion and sulfurization, thereby improving their performance and weatherability in high-power and high-frequency electronic applications.

Design/methodology/approach

This study investigates the influence of Sn doping in W-doped Ag paste to enhance resistance against electrochemical corrosion and sulfurization. A systematic examination was conducted using transient liquid phase sintering and solid–liquid inter-diffusion techniques to understand the microstructural and electrochemical properties.

Findings

This study found that Sn addition in W-doped Ag paste significantly improves its resistance to electrochemical corrosion and sulfurization. The sintering process at 600°C led to the formation of an Ag2WO4 phase at the grain boundaries, which, along with the presence of Sn, effectively inhibited the growth of Ag2WO4 grains. The 0.5% Sn-doped samples exhibited optimal anti-corrosion properties, demonstrating a longer grain boundary length and a passivation effect that significantly reduced the corrosion rate. No Ag2S phase was detected in the weatherability tests, confirming the enhanced durability of the doped samples.

Originality/value

The findings of this study highlight the potential of Sn-doped Ag-W composites as a promising material for electronic components, particularly in environments prone to sulfurization and corrosion. By improving the anti-corrosion properties and reducing the grain size, this study offers a new approach to extending the lifespan and reliability of electronic devices, making a significant contribution to the development of advanced materials for high-power and high-frequency applications.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 August 2024

Osuani Fyneface Idema, Malik Abdulwahab, Innocent Okechi Arukalam, Ifeyinwa Ekeke, Chigoziri N. Njoku, Chioma Anyiam, Benedict Onyeachu and Emeka Emmanuel Oguzie

Hexavalent chromium has been a benchmark corrosion inhibitor before it was phased out because of its carcinogenic properties. However, because it was phased out, many alternative…

Abstract

Purpose

Hexavalent chromium has been a benchmark corrosion inhibitor before it was phased out because of its carcinogenic properties. However, because it was phased out, many alternative corrosion inhibitors have been introduced but failed to meet the performance of this benchmark inhibitor. Consequently, benzotriazole (BTA) was reported to exhibit chromate-like inhibition performance. Subsequently, Intelli-ion was reported by researchers to exhibit chromate-like performance also with claims of being a unique alternative. This paper aims to review the inhibition performance of these two alternatives. Above all, promotes the unique inhibition performance of Intelli-ion that makes it suitable for application in many sectors.

Design/methodology/approach

In this paper, the corrosion inhibition performances of BTA and Intelli-ion were compared systematically by reviewing some related literatures based on the opinion of the authors.

Findings

Different methodologies for measuring the inhibition performance of BTA showed that it’s an inhibitor of choice. However, the cut edge corrosion performance of Intelli-ion and BTA corrosion inhibitors on galvanized steel of 55% Wt.% Al, 44% Wt.% Zn and 1% Wt.% Si in 5 Wt.% NaCl solution was compared when subjected to scanning vibrating electrode technique (SVET) for 24 h. The results showed faint blue-colored region depicting negative cathodic current density for the Intelli-ion while there was a high-intensity of red-colored region depicting a positive anodic current density for BTA. In other words, the Intelli-ion inhibitor had a better overall cut-edge corrosion inhibition performance than the BTA inhibitor.

Originality/value

This paper compares and further, summarizes the corrosion inhibition performance of Intelli-ion and BTA by evaluating SVET results from the literature. In addition, it serves as an overview and reference for the unique inhibition performance of Intelli-ion when applied in field applications.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 July 2024

Maryam Fatima, Ayesha Sohail, Youming Lei, Sadiq M. Sait and R. Ellahi

Enzymes play a pivotal role in orchestrating essential biochemical processes and influencing various cellular activities in tissue. This paper aims to provide the process of…

Abstract

Purpose

Enzymes play a pivotal role in orchestrating essential biochemical processes and influencing various cellular activities in tissue. This paper aims to provide the process of enzyme diffusion within the tissue matrix and enhance the nano system performance by means of the effectiveness of enzymatic functions. The diffusion phenomena are also documented, providing chemical insights into the complex processes governing enzyme movement.

Design/methodology/approach

A computational analysis is used to develop and simulate an optimal control model using numerical algorithms, systematically regulating enzyme concentrations within the tissue scaffold.

Findings

The accompanying videographic footages offer detailed insights into the dynamic complexity of the system, enriching the reader’s understanding. This comprehensive exploration not only contributes valuable knowledge to the field but also advances computational analysis in tissue engineering and biomimetic systems. The work is linked to biomolecular structures and dynamics, offering a detailed understanding of how these elements influence enzymatic functions, ultimately bridging the gap between theoretical insights and practical implications.

Originality/value

A computational predictive model for nanozyme that describes the reaction diffusion dynamics process with enzyme catalysts is yet not available in existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 July 2024

Anindya Bose, Sarthak Sengupta and Sayori Biswas

This study aims to provide a microfluidic blood glucose sensing platform based on integrated interdigitated electrode arrays (IDEAs) on a flexible quartz glass substrate, adhering…

Abstract

Purpose

This study aims to provide a microfluidic blood glucose sensing platform based on integrated interdigitated electrode arrays (IDEAs) on a flexible quartz glass substrate, adhering closely to pertinent electrochemical characterizations.

Design/methodology/approach

Sensors are the key elements of the modern electronics era through which all the possible physical quantities can be detected and converted into their equivalent electrical form and processed further. But to make the sensing environment better, various types of innovative architectures are being developed nowadays and among them interdigitated electrodes are quite remarkable in terms of their sensing capability. They are a well-qualified candidate in the field of gas sensing and biosensing, but even their sensitivities are getting saturated due to their physical dimensions. Most of the thin film IDEAs fabricated by conventional optical lithographic techniques do not possess a high surface-to-volume ratio to detect the target specified and that reduces their sensitivity factor. In this context, a classic conductive carbon-based highly sensitive three dimensional (3D) IDEA-enabled biosensing system has been conceived on a transparent and flexible substrate to measure the amount of glucose concentration present in human blood. 3D IDEA possesses a way better capacitive sensing behavior compared to conventional thin film microcapacitive electrodes. To transmit the target biological analyte sample property for the detection purpose to the interdigitated array-based sensing platform, the design of a microfluidic channel is initiated on the same substrate. The complex 3D Inter Digital array structure improves the overall capacitance of the entire sensing platform and the reactive surface area as well. The manufactured integrated device displays a decent value of sensitivity in the order of 5.6 µA mM−1 cm−2.

Findings

Development of a low-cost array-based integrated and highly flexible microfluidic biochip to extract the quantity of glucose present in human blood.

Originality/value

Potential future research opportunities in the realm of integrated miniaturized, low-cost smart biosensing systems may arise from this study.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 September 2024

Abdelhak Daiz, Rachid Hidki, Redouane Fares and Zouhair Charqui

The purpose of this study is to analyze the free convection phenomena arising from a temperature disparity between a cold circular cylinder and a heated corrugated cylinder.

Abstract

Purpose

The purpose of this study is to analyze the free convection phenomena arising from a temperature disparity between a cold circular cylinder and a heated corrugated cylinder.

Design/methodology/approach

Numerical simulations were used to analyze the convection patterns. The inner cylinder, made of a thermally conductive solid material, was heated through its inner surface, while the space between the cylinders was filled with air. The governing equations for velocity, pressure and temperature were solved using a Galerkin finite element method-based solver for partial differential equations.

Findings

The study explored various parameters affecting the dynamic and thermal structure of the flow, including the Rayleigh number (103 ≤ Ra ≤ 106), the number of corrugations of the inner cylinder (3 ≤ N ≤ 18), the thermal conductivity of the hollow cylinder (1 ≤ K ≤ 200) and the angle of inclination of the inner cylinder (0° ≤ φ ≤ 90°). Results indicated a notable sensitivity of flow intensity to changes in the Rayleigh number and the inner cylinder’s inclination angle φ. Particularly, for Ra = 106, the average heat transfer rate increased by 203% with a K ratio increment from 1 to 100 but decreased by 16.3% as the number of corrugations increased from 3 to 18.

Originality/value

This research contributes to understanding the complex interplay between geometry, thermal properties and flow dynamics in natural convection systems involving cylindrical geometries. The findings offer useful insights for improving the transfer of heat procedures in real-world situations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 September 2024

Muhammad Faisal, Iftikhar Ahmad, Qazi Zan-Ul-Abadin, Irfan Anjum Badruddin and Mohamed Hussien

This study aims to explore entropy evaluation in the bi-directional flow of Casson hybrid nanofluids within a stagnated domain, a topic of significant importance for optimizing…

Abstract

Purpose

This study aims to explore entropy evaluation in the bi-directional flow of Casson hybrid nanofluids within a stagnated domain, a topic of significant importance for optimizing thermal systems. The aim is to investigate the behavior of unsteady, magnetized and laminar flow using a parametric model based on the thermo-physical properties of alumina and copper nanoparticles.

Design/methodology/approach

The research uses boundary layer approximations and the Keller-box method to solve the derived ordinary differential equations, ensuring numerical accuracy through convergence and stability analysis. A comparison benchmark has been used to authenticate the accuracy of the numerical outcomes.

Findings

Results indicate that increasing the Casson fluid parameter (ranging from 0.1 to 1.0) reduces velocity, the Bejan number decreases with higher bidirectional flow parameter (ranging from 0.1 to 0.9) and the Nusselt number increases with higher nanoparticle concentrations (ranging from 1% to 4%).

Research limitations/implications

This study has limitations, including the assumption of laminar flow and the neglect of possible turbulent effects, which could be significant in practical applications.

Practical implications

The findings offer insights for optimizing thermal management systems, particularly in industries where precise control of heat transfer is crucial. The Keller-box simulation method proves to be effective in accurately predicting the behavior of such complex systems, and the entropy evaluation aids in assessing thermodynamic irreversibilities, which can enhance the efficiency of engineering designs.

Originality/value

These findings provide valuable insights into the thermal management of hybrid nanofluid systems, marking a novel contribution to the field.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 21