Search results
1 – 2 of 2Cosimo Magazzino and Fabio Gaetano Santeramo
In this paper, the heterogeneity of the linkages among financial development, productivity and growth across income groups is emphasized.
Abstract
Purpose
In this paper, the heterogeneity of the linkages among financial development, productivity and growth across income groups is emphasized.
Design/methodology/approach
An empirical analysis is conducted with an illustrative sample of 130 economies over the period 1991–2019 and classified into four subsamples: Organisation for Economic Co-operation and Development (OECD), developing, least developed and net food importing developing countries. Forecast error variance decompositions and panel vector auto-regressive estimations are computed, with insightful findings.
Findings
Higher levels of output stimulate the economic development in the agricultural sector, mainly via the productivity channel and, in the most developed economies, also through access to credit. Differently, in developing and least developed economies, the role of access to credit is marginal. The findings have practical implications for stakeholders involved in the planning of long-run investments. In less developed economies, priorities should be given to investments in technology and innovation, whereas financial markets are more suited to boost the development of the agricultural sector of developed economies.
Originality/value
The authors conclude on the credit–output–productivity nexus and contribute to the literature in (at least) three ways. First, they assess how credit access, agricultural output and agricultural productivity are jointly determined. Second, they use a novel approach, which departs from most of the case studies based on single-country data. Third, they conclude on potential causality links to conclude on policy implications.
Details
Keywords
Cosimo Magazzino, Monica Auteri, Nicolas Schneider, Ferdinando Ofria and Marco Mele
The objective of this study is to reevaluate the correlation among pharmaceutical consumption, per capita income, and life expectancy across different age groups (at birth, middle…
Abstract
Purpose
The objective of this study is to reevaluate the correlation among pharmaceutical consumption, per capita income, and life expectancy across different age groups (at birth, middle age, and advanced age) within the OECD countries between 1998 and 2018.
Design/methodology/approach
We employ a two-step methodology, utilizing two independent approaches. Firstly, we con-duct the Dumitrescu-Hurlin pairwise panel causality test, followed by Machine Learning (ML) experiments employing the Causal Direction from Dependency (D2C) Prediction algorithm and a DeepNet process, thought to deliver robust inferences with respect to the nature, sign, direction, and significance of the causal relationships revealed in the econometric procedure.
Findings
Our findings reveal a two-way positive bidirectional causal relationship between GDP and total pharmaceutical sales per capita. This contradicts the conventional notion that health expenditures decrease with economic development due to general health improvements. Furthermore, we observe that GDP per capita positively correlates with life expectancy at birth, 40, and 60, consistently generating positive and statistically significant predictive values. Nonetheless, the value generated by the input life expectancy at 60 on the target income per capita is negative (−61.89%), shedding light on the asymmetric and nonlinear nature of this nexus. Finally, pharmaceutical sales per capita improve life expectancy at birth, 40, and 60, with higher magnitudes compared to those generated by the income input.
Practical implications
These results offer valuable insights into the intricate dynamics between economic development, pharmaceutical consumption, and life expectancy, providing important implications for health policy formulation.
Originality/value
Very few studies shed light on the nature and the direction of the causal relationships that operate among these indicators. Exiting from the standard procedures of cross-country regressions and panel estimations, the present manuscript strives to promote the relevance of using causality tests and Machine Learning (ML) methods on this topic. Therefore, this paper seeks to contribute to the literature in three important ways. First, this is the first study analyzing the long-run interactions among pharmaceutical consumption, per capita income, and life expectancy for the Organization for Economic Co-operation and Development (OECD) area. Second, this research contrasts with previous ones as it employs a complete causality testing framework able to depict causality flows among multiple variables (Dumitrescu-Hurlin causality tests). Third, this study displays a last competitive edge as the panel data procedures are complemented with an advanced data testing method derived from AI. Indeed, using an ML experiment (i.e. Causal Direction from Dependency, D2C and algorithm) it is believed to deliver robust inferences regarding the nature and the direction of the causality. All in all, the present paper is believed to represent a fruitful methodological research orientation. Coupled with accurate data, this seeks to complement the literature with novel evidence and inclusive knowledge on this topic. Finally, to bring accurate results, data cover the most recent and available period for 22 OECD countries: from 1998 to 2018.
Details