Search results
1 – 1 of 1For ranking aggregation in crowdsourcing task, the key issue is how to select the optimal working group with a given number of workers to optimize the performance of their…
Abstract
Purpose
For ranking aggregation in crowdsourcing task, the key issue is how to select the optimal working group with a given number of workers to optimize the performance of their aggregation. Performance prediction for ranking aggregation can solve this issue effectively. However, the performance prediction effect for ranking aggregation varies greatly due to the different influencing factors selected. Although questions on why and how data fusion methods perform well have been thoroughly discussed in the past, there is a lack of insight about how to select influencing factors to predict the performance and how much can be improved of.
Design/methodology/approach
In this paper, performance prediction of multivariable linear regression based on the optimal influencing factors for ranking aggregation in crowdsourcing task is studied. An influencing factor optimization selection method based on stepwise regression (IFOS-SR) is proposed to screen the optimal influencing factors. A working group selection model based on the optimal influencing factors is built to select the optimal working group with a given number of workers.
Findings
The proposed approach can identify the optimal influencing factors of ranking aggregation, predict the aggregation performance more accurately than the state-of-the-art methods and select the optimal working group with a given number of workers.
Originality/value
To find out under which condition data fusion method may lead to performance improvement for ranking aggregation in crowdsourcing task, the optimal influencing factors are identified by the IFOS-SR method. This paper presents an analysis of the behavior of the linear combination method and the CombSUM method based on the optimal influencing factors, and optimizes the task assignment with a given number of workers by the optimal working group selection method.
Details