Search results
1 – 10 of over 1000Tirth Patel, Brian H.W. Guo, Jacobus Daniel van der Walt and Yang Zou
Current solutions for monitoring the progress of pavement construction (such as collecting, processing and analysing data) are inefficient, labour-intensive, time-consuming…
Abstract
Purpose
Current solutions for monitoring the progress of pavement construction (such as collecting, processing and analysing data) are inefficient, labour-intensive, time-consuming, tedious and error-prone. In this study, an automated solution proposes sensors prototype mounted unmanned ground vehicle (UGV) for data collection, an LSTM classifier for road layer detection, the integrated algorithm for as-built progress calculation and web-based as-built reporting.
Design/methodology/approach
The crux of the proposed solution, the road layer detection model, is proposed to develop from the layer change detection model and rule-based reasoning. In the beginning, data were gathered using a UGV with a laser ToF (time-of-flight) distance sensor, accelerometer, gyroscope and GPS sensor in a controlled environment. The long short-term memory (LSTM) algorithm was utilised on acquired data to develop a classifier model for layer change detection, such as layer not changed, layer up and layer down.
Findings
In controlled environment experiments, the classification of road layer changes achieved 94.35% test accuracy with 14.05% loss. Subsequently, the proposed approach, including the layer detection model, as-built measurement algorithm and reporting, was successfully implemented with a real case study to test the robustness of the model and measure the as-built progress.
Research limitations/implications
The implementation of the proposed framework can allow continuous, real-time monitoring of road construction projects, eliminating the need for manual, time-consuming methods. This study will potentially help the construction industry in the real time decision-making process of construction progress monitoring and controlling action.
Originality/value
This first novel approach marks the first utilization of sensors mounted UGV for monitoring road construction progress, filling a crucial research gap in incremental and segment-wise construction monitoring and offering a solution that addresses challenges faced by Unmanned Aerial Vehicles (UAVs) and 3D reconstruction. Utilizing UGVs offers advantages like cost-effectiveness, safety and operational flexibility in no-fly zones.
Details
Keywords
Hong-Bo Jiang, Zou-Yang Fan, Jin-Long Wang, Shih-Hao Liu and Wen-Jing Lin
This study adopts the elaboration likelihood model and configuration perspectives to explore the internal mechanisms underlying the influence of live streaming on consumer trust…
Abstract
Purpose
This study adopts the elaboration likelihood model and configuration perspectives to explore the internal mechanisms underlying the influence of live streaming on consumer trust building and purchase intention.
Design/methodology/approach
This study invited 757 experienced live streaming e-commerce users from Chinese platforms such as TikTok and RED, who participated in survey by filling questionnaires collected online. The research employed a mixed-method approach using SEM and fsQCA. SEM was utilized to analyze quantitative data to determine the direct and mediated relationships within product trust, while fsQCA served as a complement to identify the combinations of conditions that enhance product trust.
Findings
The findings reveal three important insights. Firstly, in the context of live streaming e-commerce, both product characteristics and streamer characteristics significantly influence consumers' trust in products. The para-social interaction plays a partial mediating role in the relationship between streamer characteristics and product trust. Secondly, four distinct paths are identified that contribute to enhancing product trust in live streaming e-commerce. Thirdly, PSI emerging as a core condition across all four paths, underscores the importance for merchants to foster positive social interactions with consumers beyond the live streaming environment.
Originality/value
This study enhances understanding of the dynamic live streaming e-commerce industry, offering insights into consumer behavior and practical guidance for merchants seeking to build engaged, trustworthy customer relationships.
Details
Keywords
This study collected the bibliographic data of 2034 journal articles published in 2000–2021 from Web of Science (WoS) core collection database and adopted two bibliometric…
Abstract
Purpose
This study collected the bibliographic data of 2034 journal articles published in 2000–2021 from Web of Science (WoS) core collection database and adopted two bibliometric analysis methods, namely historiography and keyword co-occurrence, to identify the evolution trend of construction risk management (CRM) research topics.
Design/methodology/approach
CRM has been a key issue in construction management research, producing a big number of publications. This study aims to undertake a review of the global CRM research published from 2000 to 2021 and identify the evolution of the research topics relating to CRM.
Findings
This study found that risk analysis methods have shifted from simply ranking risks in terms of their relative importance or significance toward examining the interrelationships among risks, and that the objects of CRM research have shifted from generic construction projects toward specified types of construction projects (e.g. small projects, underground construction projects, green buildings and prefabricated projects). In addition, researchers tend to pay more attention to an individual risk category (e.g. political risk, safety risk and social risk) and integrate CRM into cost, time, quality, safety and environment management functions with the increasing adoption of various information and communication technologies.
Research limitations/implications
This study focused on the journal articles in English in WoS core collection database only, thus excluding the publications in other languages, not indexed by WoS and conference proceedings. In addition, the historiography focused on the top documents in terms of document strength and thus ignored the role of the documents whose strengths were a little lower than the threshold.
Originality/value
This review study is more inclusive than any prior reviews on CRM and overcomes the drawbacks of mere reliance on either bibliometric analysis results or subjective opinions. Revealing the evolution process of the CRM knowledge domain, this study provides an in-depth understanding of the CRM research and benefits industry practitioners and researchers.
Details
Keywords
Libiao Bai, Xinru Zhang, Chaopeng Song and Jiaqi Wei
Effectively predicting research and development project portfolio benefit (R&D PPB) could assist organizations in monitoring the execution of research and development project…
Abstract
Purpose
Effectively predicting research and development project portfolio benefit (R&D PPB) could assist organizations in monitoring the execution of research and development project portfolio (R&D PP). However, due to the uncertainty and complexity of R&D PPB, current research remains lacking a valid R&D PPB prediction tool. Therefore, an R&D PPB prediction model is proposed via a backpropagation neural network (BPNN).
Design/methodology/approach
The R&D PPB prediction model is constructed via a refined immune genetic algorithm coupling backpropagation neural network (RIGA-BPNN). Firstly, considering the characteristics of R&D PP, benefit evaluation criteria are identified. Secondly, the benefit criteria values are derived as input variables to the model via trapezoidal fuzzy numbers, and then the R&D PPB value is determined as the output variable through the CRITIC method. Thirdly, a refined immune genetic algorithm (RIGA) is designed to optimize BPNN by enhancing polyfitness, crossover and mutation probabilities. Lastly, the R&D PPB prediction model is constructed via the RIGA-BPNN, followed by training and testing.
Findings
The accuracy of the R&D PPB prediction model stands at 99.26%. In addition, the comparative experiment results indicate that the proposed model surpasses BPNN and the immune genetic algorithm coupling backpropagation neural network (IGA-BPNN) in both convergence speed and accuracy, showcasing superior performance in R&D PPB prediction. This study enriches the R&D PPB predicting methodology by providing managers with an effective benefits management tool.
Research limitations/implications
The research implications of this study encompass three aspects. First, this study provides a profound insight into R&D PPB prediction and enriches the research in PP fields. Secondly, during the construction of the R&D PPB prediction model, the utilization of the composite system synergy model for quantifying synergy contributes to a comprehensive understanding of intricate interactions among benefits. Lastly, in this research, a RIGA is proposed for optimizing the BPNN to efficiently predict R&D PPB.
Practical implications
This study carries threefold implications for the practice of R&D PPM. To begin with, the approach proposed serves as an effective tool for managers to predict R&D PPB. Then, the model excels in efficiency and flexibility. Furthermore, the proposed model could be used to tackle additional challenges in R&D PPM, such as gauging the potential risk level of R&D PP.
Social implications
Effective predicting of R&D PPB enables organizations to allocate their limited resources more strategically, ensuring optimal use of capital, manpower and time. By accurately predicting benefit, an organization can prioritize high-potential initiatives, thereby improving innovation efficiency and reducing the risk of failed investments. This approach not only strengthens market competitiveness but also positions organizations to adapt more effectively to changing market conditions, fostering long-term growth and sustainability in a competitive business environment.
Originality/value
Incorporating the characteristics of R&D PP and quantifying the synergy between benefits, this study facilitates a more insightful R&D PPB prediction. Additionally, improvements to the polyfitness, crossover and mutation probabilities of IGA are made, and the aforementioned RIGA is applied to optimize the BPNN. It significantly enhances the prediction accuracy and convergence speed of the neural network, improving the effectiveness of the R&D PPB prediction model.
Details
Keywords
Ruyue Han, Xingmei Li, Zhong Shen and Dongqing Jia
The consideration of the substitution phenomenon in the project portfolio selection problem can improve the robustness of project portfolio selection and help enterprises better…
Abstract
Purpose
The consideration of the substitution phenomenon in the project portfolio selection problem can improve the robustness of project portfolio selection and help enterprises better achieve their strategic objectives. However, the existence of inter-project risk propagation will have a negative impact on project substitution. This paper proposes a new framework for project portfolio selection and constructs a risk propagation model based on strategic objectives to study the impact of risk propagation on substitution in the project portfolio.
Design/methodology/approach
The authors first construct a risk propagation model based on strategic objectives to describe the risk propagation between projects. Then the project substitution phenomenon based on risk propagation is put forward, and the calculation method of substitution loss is given. Finally, a robust project portfolio selection framework based on strategic objectives considering risk propagation is constructed.
Findings
The analysis of a case study demonstrates that (1) With the increase of risk intensity, the strategic loss of the same project portfolio increases linearly, and under the same risk intensity, the more projects in the portfolio, the stronger the robustness. (2) Considering risk propagation, the effect of project substitution is significantly weakened, and the strategic loss rate of the project portfolio is significantly increased compared with that of a direct attack.
Originality/value
This study is the first to take the project substitution into account in the project portfolio selection process. Moreover, the authors describe inter-project risk propagation and analyze the impact of risk propagation on the project substitution phenomenon. Finally, the authors extend the evaluation index of robustness. This paper puts forward a new way to solve the problem of project portfolio selection.
Details
Keywords
Renyi Wen, Chunxiao Xue and Jianing Zhang
The study examines the relationship between CEO characteristics and corporate social responsibility (CSR) in China. Previous studies showed that good CSR behaviour could enhance…
Abstract
The study examines the relationship between CEO characteristics and corporate social responsibility (CSR) in China. Previous studies showed that good CSR behaviour could enhance the firm’s financial performance. CEOs are responsible for major decision-making, including CSR policies. This chapter uses all A-share listed firms in China from 2011 to 2020. The authors find that CEO’s gender, age, educational background, and career experience have positive relationships with CSR. This chapter enriches the current literature on the effects of CEO characteristics and highlights the important roles of CEO characteristics in CSR activities.
Details
Keywords
The number of universities offering Master of Translation and Interpreting (MTI) in China has increased to 316 in 15 years. This paper aims to take a closer look at the production…
Abstract
Purpose
The number of universities offering Master of Translation and Interpreting (MTI) in China has increased to 316 in 15 years. This paper aims to take a closer look at the production patterns of experimental report theses in terms of total number, distribution across universities, supervision model and research content, reflects on the problems and suggests improvements, provides a reference for MTI education in China and beyond.
Design/methodology/approach
This paper presents a bibliometric analysis of the published final theses of experimental reports for the MTI in China between the years 2012 and 2022, the period during which this type of thesis was produced, to identify the production patterns of these theses.
Findings
The number of experimental reports published by the nine leading universities accounts for 80% of the total 296 papers. The uneven development is also reflected in the supervision model and research content. Most universities can structure the main content of theses according to the suggestions of the MTI Guidance Training Outline. However, there are still deficiencies in the areas of experimental design, experimental validity, research questions and academic standards.
Originality/value
This paper reflects on the problems of MTI theses of experimental reports. Also, suggestions are made for linking top-level design and university education, for joint progress in faculty development and talent training and for integrating industrial aspects and international visions, to provide a reference for MTI education in China and beyond.
Details
Keywords
Libiao Bai, Shuyun Kang, Kaimin Zhang, Bingbing Zhang and Tong Pan
External stakeholder risks (ESRs) caused by unfavorable behaviors hinder the success of project portfolios (PPs). However, due to complex project dependency and numerous risk…
Abstract
Purpose
External stakeholder risks (ESRs) caused by unfavorable behaviors hinder the success of project portfolios (PPs). However, due to complex project dependency and numerous risk causality in PPs, assessing ESRs is difficult. This research aims to solve this problem by developing an ESR-PP two-layer fuzzy Bayesian network (FBN) model.
Design/methodology/approach
A two-layer FBN model for evaluating ESRs with risk causality and project dependency is proposed. The directed acyclic graph (DAG) of an ESR-PP network is first constructed, and the conditional probability tables (CPTs) of the two-layer network are further presented. Next, based on the fuzzy Bayesian network, key variables and the impact of ESRs are assessed and analyzed by using GeNIe2.3. Finally, a numerical example is used to demonstrate and verify the application of the proposed model.
Findings
The proposed model is a useable and effective approach for ESR assessment while considering risk causality and project dependency in PPs. The impact of ESRs on PP can be calculated to determine whether to control risk, and the most critical and heavily contributing risks and project(s) in the developed model are identified based on this.
Originality/value
This study extends prior research on PP risk in terms of stakeholders. ESRs that have received limited attention in the past are explored from an interaction perspective in the PP domain. A new two-layer FBN model considering risk causality and project dependency is proposed, which can synthesize different dependencies between projects.
Details
Keywords
Heyong Wang, Long Gu and Ming Hong
This paper aims to provide a reference for the development of digital transformation from the perspective of manufacturing process links.
Abstract
Purpose
This paper aims to provide a reference for the development of digital transformation from the perspective of manufacturing process links.
Design/methodology/approach
This paper applies canonical correlation analysis based on digital technology patents in the key links of manufacturing industries (product design, procurement, product manufacturing, warehousing and transportation, and wholesale and retail) and the related indicators of economic benefits of regions in China.
Findings
(1) The degree of digitalization of manufacturing process links is significantly correlated with economic benefits. (2) The improvement of the degree of digitalization in the “product design” link, the “warehousing and transportation” link, the “product manufacturing” link and the “wholesale and retail” link has significant impacts on the economic benefits of manufacturing industry. (3) The digital degree of the “procurement” link has no obvious influence on the economic benefits of manufacturing industry.
Practical implications
The research results can provide reference for the formulation and implementation of micro policies. The strategy of improving the level of digital transformation of key links of manufacturing industry is put forward to better promote both the digital transformation of manufacturing industry and economic development.
Originality/value
This paper innovatively studies the relationship between digitalization of manufacturing process links and economic benefits. The findings can provide theoretical and empirical support for the digital transformation of China's manufacturing industry and high-quality development of economy.
Details
Keywords
Jianhui Mao, Bo Yu and Chao Guan
Explore the impact of Party organization embedding on firm green governance.
Abstract
Purpose
Explore the impact of Party organization embedding on firm green governance.
Design/methodology/approach
The regression analysis method.
Findings
The findings show that Party organization embedding significantly enhances the green governance effects of firms, with this effect being more pronounced in environments with high-quality internal control. Moreover, the study reveals that Party organization embedding facilitates green governance through mechanisms such as reducing agency costs and optimizing management decisions. Agency costs have a negative transmission effect, while management decisions have a positive transmission effect, with the quality of internal control playing a crucial moderating role.
Research limitations/implications
Most existing studies on firm green governance have focused on aspects such as the heterogeneity of management teams (Liu, 2019; Wu et al., 2019), executive green cognition (Fineman and Clarke, 1996; Huang and Wei, 2023), organizational structure and the involvement of controlling families (Bertrand and Schoar, 2006; Symeou et al., 2019), with limited attention to the unique role of Party organizations’ incentive and restraint mechanisms, supervisory power and management functions in firm green governance. Additionally, while scholars have examined the impact of political embedding in firms, including Party organization embedding as a specific form of political embedding, and find that it affects various aspects of business performance (Chang and Wong, 2004; Gu and Yang, 2023), governance quality (Li et al., 2020; Huang and Yang, 2024), agency costs (Qian, 2000; Wang and Ma, 2014), excessive management compensation (Chang and Wong, 2004; Chen et al., 2014), social externalities and audit needs (Faccio, 2006; Cheng, 2022), there is still insufficient discussion on how Party organization embedding promotes firm green governance. Particularly in the context of China’s unique system and using Chinese data, there is a need for more in-depth research on the impact of Party organization embedding on firm green governance. This paper addresses this research gap by empirical analysis.
Practical implications
Overall, this study has significant theoretical and practical implications. Theoretically, it enriches the literature on Party organization embedding and firm green governance, filling a gap in the intersection research of firm governance and green governance. Practically, on the one hand, this paper’s findings demonstrate that the involvement of Party organizations in firm governance plays a significant role in enhancing green governance. This supports the modernization of firm governance in China, establishes a micro-level foundation for achieving the strategic goals of “carbon peaking and carbon neutrality” and offers empirically-backed insights into green transformation for policymakers. The research also provides practical policy recommendations for strengthening Party building efforts within firms and optimizing government-business relations, thereby facilitating the deep integration of Party building with business operations. On the other hand, this study highlights that the unique feature of China’s corporate governance system, Party organization embedding, can effectively enhance green governance. This offers empirical support for leveraging the strengths of China’s firm governance model and provides valuable governance strategies for firms in other countries and regions to improve their green governance practices.
Social implications
This study’s social implications are significant as it highlights the broader societal benefits that arise from integrating Party organization involvement into firm governance structures, especially within the context of green governance. By improving the green governance practices of firms, Party organization embedding helps to address pressing environmental issues such as pollution, carbon emissions and resource depletion, which ultimately contributes to healthier living environments and a more sustainable society. The emphasis on green governance supports China’s national strategy for sustainable development and demonstrates a governance model that balances economic growth with environmental stewardship. Additionally, the study underscores the role of Party organizations in fostering social responsibility, equity and cohesion by ensuring that firm decision-making aligns with both economic and social welfare goals. This model of governance provides a framework that can serve as a reference for other countries and regions looking to enhance environmental protection efforts while maintaining social stability and economic progress.
Originality/value
This study offers original insights by exploring the distinctive role of Party organization embedding in enhancing firm green governance within the unique context of China’s political and economic systems. Unlike previous research, which has primarily focused on conventional governance structures, this paper delves into the underexplored area of how Party organizations influence firm-level green governance. By examining the direct and indirect effects of Party organization embedding, this study expands current understanding of corporate governance models that integrate political structures, providing a novel perspective on how firms can achieve both economic and environmental objectives. The findings not only contribute to the literature on green governance but also present a valuable model for emerging economies that are pursuing sustainable development. This research thus provides a meaningful addition to the dialogue on corporate governance innovation and environmental responsibility.
Details