Sulaiman Abdullah Saif Alnasser Mohammed
The ability of artificial neural network (ANN) models to predict future stock prices has been the focus of extensive recent research, particularly in comparison to other models…
Abstract
The ability of artificial neural network (ANN) models to predict future stock prices has been the focus of extensive recent research, particularly in comparison to other models. However, recent literature reviews have yet to comprehensively examine the current state of research on ANN models regarding hybrid model integration, feature engineering and selection strategies, uncertainty quantification and risk assessment, transfer learning for market adaptability, and the challenges they face in predicting stock prices. This paper aims to fill this gap by critically reviewing the efforts made to explore the ability of ANN models to predict future stock prices. Using a methodology based on variables analysis, method analysis, software context, and a conclusion, this paper synthesizes 21+ papers published between 2011 and 2023. The findings indicate that ANN models have a strong potential for predicting stock market prices although there is room for improvement in some areas. This paper's findings will be of interest and use to academics and practitioners interested in ANN models for stock price prediction, particularly in development initiatives related to financial technology.
Details
Keywords
Magnus Jansson, Patrik Michaelsen, Doron Sonsino and Tommy Gärling
The paper aims to investigate differences in non-professional and professional stock investors’ trust in and tendency to follow financial analysts’ buy and sell recommendations.
Abstract
Purpose
The paper aims to investigate differences in non-professional and professional stock investors’ trust in and tendency to follow financial analysts’ buy and sell recommendations.
Design/methodology/approach
Online experiment conducted in Sweden in March 2022 comparing non-professional private investors (n = 80), professional investors (n = 33), and master students in finance (n = 28). Information was presented about four company stocks listed on the New York stock exchange. Two stocks were buy-recommended and two stocks sell-recommended by financial analysts. For one stock of each type, the recommendation was presented to participants. Dependent variables were predictions of the stock price after three months, ratings of confidence in the predictions and choices of holding, buying or selling the stock. Ratings were also made of the importance of presented stock-related information as well as trust in analysts’ skill and integrity.
Findings
More positive return predictions were made of buy-recommended than sell-recommended stocks. Non-professionals and to some degree finance students tended to trust financial analysts more than professional investors did and they were more influenced by the presentation of the buy recommendations. All groups made too optimistic return predictions, but the professionals were less confident in their predictions, more likely to sell the stocks and lost less on their investments.
Originality/value
A new finding is that non-professional stock investors are more likely than professional stock investors to trust financial analysts and follow their recommendations. It suggests that financial analysts’ recommendations influence non-professional investors to take unmotivated investment risks. Non-professionals in the stock market should hence be advised to exercise more caution in following analysts’ recommendations.
Details
Keywords
Zhenghao Liu, Yuxing Qian, Wenlong Lv, Yanbin Fang and Shenglan Liu
Stock prices are subject to the influence of news and social media, and a discernible co-movement pattern exists among multiple stocks. Using a knowledge graph to represent news…
Abstract
Purpose
Stock prices are subject to the influence of news and social media, and a discernible co-movement pattern exists among multiple stocks. Using a knowledge graph to represent news semantics and establish connections between stocks is deemed essential and viable.
Design/methodology/approach
This study presents a knowledge-driven framework for predicting stock prices. The framework integrates relevant stocks with the semantic and emotional characteristics of textual data. The authors construct a stock knowledge graph (SKG) to extract pertinent stock information and use a knowledge graph representation model to capture both the relevant stock features and the semantic features of news articles. Additionally, the authors consider the emotional characteristics of news and investor comments, drawing insights from behavioral finance theory. The authors examined the effectiveness of these features using the combined deep learning model CNN+LSTM+Attention.
Findings
Experimental results demonstrate that the knowledge-driven combined feature model exhibits significantly improved predictive accuracy compared to single-feature models.
Originality/value
The study highlights the value of the SKG in uncovering potential correlations among stocks. Moreover, the knowledge-driven multi-feature fusion stock forecasting model enhances the prediction of stock trends for well-known enterprises, providing valuable guidance for investor decision-making.
Details
Keywords
Zengli Mao and Chong Wu
Because the dynamic characteristics of the stock market are nonlinear, it is unclear whether stock prices can be predicted. This paper aims to explore the predictability of the…
Abstract
Purpose
Because the dynamic characteristics of the stock market are nonlinear, it is unclear whether stock prices can be predicted. This paper aims to explore the predictability of the stock price index from a long-memory perspective. The authors propose hybrid models to predict the next-day closing price index and explore the policy effects behind stock prices. The paper aims to discuss the aforementioned ideas.
Design/methodology/approach
The authors found a long memory in the stock price index series using modified R/S and GPH tests, and propose an improved bi-directional gated recurrent units (BiGRU) hybrid network framework to predict the next-day stock price index. The proposed framework integrates (1) A de-noising module—Singular Spectrum Analysis (SSA) algorithm, (2) a predictive module—BiGRU model, and (3) an optimization module—Grid Search Cross-validation (GSCV) algorithm.
Findings
Three critical findings are long memory, fit effectiveness and model optimization. There is long memory (predictability) in the stock price index series. The proposed framework yields predictions of optimum fit. Data de-noising and parameter optimization can improve the model fit.
Practical implications
The empirical data are obtained from the financial data of listed companies in the Wind Financial Terminal. The model can accurately predict stock price index series, guide investors to make reasonable investment decisions, and provide a basis for establishing individual industry stock investment strategies.
Social implications
If the index series in the stock market exhibits long-memory characteristics, the policy implication is that fractal markets, even in the nonlinear case, allow for a corresponding distribution pattern in the value of portfolio assets. The risk of stock price volatility in various sectors has expanded due to the effects of the COVID-19 pandemic and the R-U conflict on the stock market. Predicting future trends by forecasting stock prices is critical for minimizing financial risk. The ability to mitigate the epidemic’s impact and stop losses promptly is relevant to market regulators, companies and other relevant stakeholders.
Originality/value
Although long memory exists, the stock price index series can be predicted. However, price fluctuations are unstable and chaotic, and traditional mathematical and statistical methods cannot provide precise predictions. The network framework proposed in this paper has robust horizontal connections between units, strong memory capability and stronger generalization ability than traditional network structures. The authors demonstrate significant performance improvements of SSA-BiGRU-GSCV over comparison models on Chinese stocks.
Details
Keywords
Mohammed Ayoub Ledhem and Warda Moussaoui
This paper aims to apply several data mining techniques for predicting the daily precision improvement of Jakarta Islamic Index (JKII) prices based on big data of symmetric…
Abstract
Purpose
This paper aims to apply several data mining techniques for predicting the daily precision improvement of Jakarta Islamic Index (JKII) prices based on big data of symmetric volatility in Indonesia’s Islamic stock market.
Design/methodology/approach
This research uses big data mining techniques to predict daily precision improvement of JKII prices by applying the AdaBoost, K-nearest neighbor, random forest and artificial neural networks. This research uses big data with symmetric volatility as inputs in the predicting model, whereas the closing prices of JKII were used as the target outputs of daily precision improvement. For choosing the optimal prediction performance according to the criteria of the lowest prediction errors, this research uses four metrics of mean absolute error, mean squared error, root mean squared error and R-squared.
Findings
The experimental results determine that the optimal technique for predicting the daily precision improvement of the JKII prices in Indonesia’s Islamic stock market is the AdaBoost technique, which generates the optimal predicting performance with the lowest prediction errors, and provides the optimum knowledge from the big data of symmetric volatility in Indonesia’s Islamic stock market. In addition, the random forest technique is also considered another robust technique in predicting the daily precision improvement of the JKII prices as it delivers closer values to the optimal performance of the AdaBoost technique.
Practical implications
This research is filling the literature gap of the absence of using big data mining techniques in the prediction process of Islamic stock markets by delivering new operational techniques for predicting the daily stock precision improvement. Also, it helps investors to manage the optimal portfolios and to decrease the risk of trading in global Islamic stock markets based on using big data mining of symmetric volatility.
Originality/value
This research is a pioneer in using big data mining of symmetric volatility in the prediction of an Islamic stock market index.
Details
Keywords
Xiao Yao, Dongxiao Wu, Zhiyong Li and Haoxiang Xu
Since stock return and volatility matters to investors, this study proposes to incorporate the textual sentiment of annual reports in stock price crash risk prediction.
Abstract
Purpose
Since stock return and volatility matters to investors, this study proposes to incorporate the textual sentiment of annual reports in stock price crash risk prediction.
Design/methodology/approach
Specific sentences gathered from management discussions and their subsequent analyses are tokenized and transformed into numeric vectors using textual mining techniques, and then the Naïve Bayes method is applied to score the sentiment, which is used as an input variable for crash risk prediction. The results are compared between a collection of predictive models, including linear regression (LR) and machine learning techniques.
Findings
The experimental results find that those predictive models that incorporate textual sentiment significantly outperform the baseline models with only accounting and market variables included. These conclusions hold when crash risk is proxied by either the negative skewness of the return distribution or down-to-up volatility (DUVOL).
Research limitations/implications
It should be noted that the authors' study focuses on examining the predictive power of textual sentiment in crash risk prediction, while other dimensions of textual features such as readability and thematic contents are not considered. More analysis is needed to explore the predictive power of textual features from various dimensions, with the most recent sample data included in future studies.
Originality/value
The authors' study provides implications for the information value of textual data in financial analysis and risk management. It suggests that the soft information contained within annual reports may prove informative in crash risk prediction, and the incorporation of textual sentiment provides an incremental improvement in overall predictive performance.
Details
Keywords
Manpreet Kaur, Amit Kumar and Anil Kumar Mittal
In past decades, artificial neural network (ANN) models have revolutionised various stock market operations due to their superior ability to deal with nonlinear data and garnered…
Abstract
Purpose
In past decades, artificial neural network (ANN) models have revolutionised various stock market operations due to their superior ability to deal with nonlinear data and garnered considerable attention from researchers worldwide. The present study aims to synthesize the research field concerning ANN applications in the stock market to a) systematically map the research trends, key contributors, scientific collaborations, and knowledge structure, and b) uncover the challenges and future research areas in the field.
Design/methodology/approach
To provide a comprehensive appraisal of the extant literature, the study adopted the mixed approach of quantitative (bibliometric analysis) and qualitative (intensive review of influential articles) assessment to analyse 1,483 articles published in the Scopus and Web of Science indexed journals during 1992–2022. The bibliographic data was processed and analysed using VOSviewer and R software.
Findings
The results revealed the proliferation of articles since 2018, with China as the dominant country, Wang J as the most prolific author, “Expert Systems with Applications” as the leading journal, “computer science” as the dominant subject area, and “stock price forecasting” as the predominantly explored research theme in the field. Furthermore, “portfolio optimization”, “sentiment analysis”, “algorithmic trading”, and “crisis prediction” are found as recently emerged research areas.
Originality/value
To the best of the authors’ knowledge, the current study is a novel attempt that holistically assesses the existing literature on ANN applications throughout the entire domain of stock market. The main contribution of the current study lies in discussing the challenges along with the viable methodological solutions and providing application area-wise knowledge gaps for future studies.
Details
Keywords
Srivatsa Maddodi and Srinivasa Rao Kunte
The Indian stock market can be tricky when there's trouble in the world, like wars or big conflicts. It's like trying to read a secret message. We want to figure out what makes…
Abstract
Purpose
The Indian stock market can be tricky when there's trouble in the world, like wars or big conflicts. It's like trying to read a secret message. We want to figure out what makes investors nervous or happy, because their feelings often affect how they buy and sell stocks. We're building a tool to make prediction that uses both numbers and people's opinions.
Design/methodology/approach
Hybrid approach leverages Twitter sentiment, market data, volatility index (VIX) and momentum indicators like moving average convergence divergence (MACD) and relative strength index (RSI) to deliver accurate market insights for informed investment decisions during uncertainty.
Findings
Our study reveals that geopolitical tensions' impact on stock markets is fleeting and confined to the short term. Capitalizing on this insight, we built a ground-breaking predictive model with an impressive 98.47% accuracy in forecasting stock market values during such events.
Originality/value
To the best of the authors' knowledge, this model's originality lies in its focus on short-term impact, novel data fusion and high accuracy. Focus on short-term impact: Our model uniquely identifies and quantifies the fleeting effects of geopolitical tensions on market behavior, a previously under-researched area. Novel data fusion: Combining sentiment analysis with established market indicators like VIX and momentum offers a comprehensive and dynamic approach to predicting market movements during volatile periods. Advanced predictive accuracy: Achieving the prediction accuracy (98.47%) sets this model apart from existing solutions, making it a valuable tool for informed decision-making.
Details
Keywords
Stiven Agusta, Fuad Rakhman, Jogiyanto Hartono Mustakini and Singgih Wijayana
The study aims to explore how integrating recent fundamental values (RFVs) from conventional accounting studies enhances the accuracy of a machine learning (ML) model for…
Abstract
Purpose
The study aims to explore how integrating recent fundamental values (RFVs) from conventional accounting studies enhances the accuracy of a machine learning (ML) model for predicting stock return movement in Indonesia.
Design/methodology/approach
The study uses multilayer perceptron (MLP) analysis, a deep learning model subset of the ML method. The model utilizes findings from conventional accounting studies from 2019 to 2021 and samples from 10 firms in the Indonesian stock market from September 2018 to August 2019.
Findings
Incorporating RFVs improves predictive accuracy in the MLP model, especially in long reporting data ranges. The accuracy of the RFVs is also higher than that of raw data and common accounting ratio inputs.
Research limitations/implications
The study uses Indonesian firms as its sample. We believe our findings apply to other emerging Asian markets and add to the existing ML literature on stock prediction. Nevertheless, expanding to different samples could strengthen the results of this study.
Practical implications
Governments can regulate RFV-based artificial intelligence (AI) applications for stock prediction to enhance decision-making about stock investment. Also, practitioners, analysts and investors can be inspired to develop RFV-based AI tools.
Originality/value
Studies in the literature on ML-based stock prediction find limited use for fundamental values and mainly apply technical indicators. However, this study demonstrates that including RFV in the ML model improves investors’ decision-making and minimizes unethical data use and artificial intelligence-based fraud.
Details
Keywords
Mohamed Lachaab and Abdelwahed Omri
The goal of this study is to investigate the predictive performance of the machine and deep learning methods in predicting the CAC 40 index and its 40 constituent prices of the…
Abstract
Purpose
The goal of this study is to investigate the predictive performance of the machine and deep learning methods in predicting the CAC 40 index and its 40 constituent prices of the French stock market during the COVID-19 pandemic. The study objective in forecasting the CAC 40 index is to analyze if the index and the individual prices will preserve the continuous increase they acquired at the beginning of the administration of vaccination and containment measures or if the negative effect of the pandemic will be reflected in the future.
Design/methodology/approach
The authors apply two machine and deep learning methods (KNN and LSTM) and compare their performances to ARIMA time series model. Two scenarios have been considered: optimistic (high values) and pessimistic (low values) and four periods are examined: the period before COVID-19 pandemic, the period during the COVID-19, and the period of vaccination and containment. The last period is divided into two sub-periods: the test period and the prediction period.
Findings
The authors found that the KNN method performed better than LSTM and ARIMA in forecasting the CAC 40 index for both scenarios. The authors also identified that the positive effect of vaccination and containment outweighs the negative effect of the pandemic, and the recovery pattern is not even among major companies in the stock market.
Practical implications
The study empirical results have valuable practical implications for companies in the stock market to respond to unexpected events such as COVID-19, improve operational efficiency and enhance long-term competitiveness. Companies in the transportation sector should consider additional investment in R&D on communication and information technology, accelerate their digital capabilities, at least in some parts of their businesses, develop plans for lights out factories and supply chains to keep pace with changing times, and even include big data resources. Additionally, they should also use a mix of financing sources and securities in order to diversify their capital structure, and not rely only on equity financing as their share prices are volatile and below the pre-pandemic level. Considering portfolio allocation, the transportation sector was severely affected by the pandemic. This displays that transportation equities fail to be a candidate as a good diversifier during the health crisis. However, the diversification would be worth it while including assets related to the banking and industrial sectors. On another strand, the instability of this period induced an informational asymmetry among investors. This pessimistic mood affected the assets' value and created a state of disequilibrium opening up more opportunities to benefit from potential arbitrage profits.
Originality/value
The impact of COVID-19 on stock markets is significant and affects investor behavior, who suffered amplified losses in a very short period of time. In this regard, correct and well-informed decision-making by investors and other market participants requires careful analysis and accurate prediction of the stock markets during the pandemic. However, few studies have been conducted in this area, and those studies have either concentrated on some specific stock markets or did not apply the powerful machine learning and deep learning techniques such as LSTM and KNN. To the best of our knowledge, no research has been conducted that used these techniques to assess and forecast the CAC 40 French stock market during the pandemic. This study tries to close this gap in the literature.