Kunyu Wei, Bowen Li and Xiaofan He
Developing severe load spectrum of transport aircraft structures is crucial for enhancing the fatigue damage correlation between full-scale fatigue testing results and operational…
Abstract
Purpose
Developing severe load spectrum of transport aircraft structures is crucial for enhancing the fatigue damage correlation between full-scale fatigue testing results and operational service. The lack of consensus on severe spectrum development methods for transport aircraft has prompted the current research, resulting in a proposed approach for a severe gust load spectrum based on the acceleration cumulative exceedance surface.
Design/methodology/approach
The measured load data were analyzed using a model based on the cumulative exceedance number surface to describe the variation in exceedance numbers. An improved sampling method based on multivariate Markov Chain Monte Carlo was employed to obtain the fleet fatigue damage distribution, enabling the determination of the severity of severe spectrum and the corresponding cumulative exceedance number surface, and a severe gust load spectrum was developed based on the surface.
Findings
The method that characterizes load spectrum variation using the cumulative exceedance surface minimizes the randomness of peak-trough pairs by incorporating the correlation of load spectrum peaks and troughs. This approach reduces the variation in fleet fatigue damage, thereby lowering the requirements for the severity of severe spectrum fatigue damage.
Originality/value
The proposed methodology extends from a one-dimensional curve to a two-dimensional surface, accounting for the correlation between peak and trough values to develop a severe spectrum. This approach more accurately describes the variation in acceleration cumulative exceedance numbers, directly benefiting fatigue damage calculation. This study provides valuable references for developing severe spectrum for transport aircraft.
Details
Keywords
Delin Chen, Yan Chen and Jinxin Chen
This paper aims to analyze the characteristics of friction vibration signals and identify the vibration excitation source at the start and stop stage of microtextured end face of…
Abstract
Purpose
This paper aims to analyze the characteristics of friction vibration signals and identify the vibration excitation source at the start and stop stage of microtextured end face of dry gas seals.
Design/methodology/approach
The friction pair consists of a diamond-like carbon (DLC) film microtextured seal ring and a spiral groove seal ring. Friction vibration signal feature extraction method based on harmonic wavelet packet and spectrum analysis was proposed. Signals were collected using acceleration sensor, acquisition card and LabVIEW software. Vibration acceleration signal was decomposed into 32 frequency bands using MATLAB wavelet packet transformation. The 32nd band coefficient was extracted for reconstruction, time-domain and spectral waveforms were obtained and spectra before/after denoising were compared.
Findings
The end face of the DLC film microtextured seal ring generates a good dynamic pressure effect, and the friction and vibration reduction effects are obvious. The harmonic wavelet packet can decompose the vibration signal conveniently and precisely. In the case of this experiment, the frequency of vibration of the seal ring is 7500 HZ.
Originality/value
The results show that the method is effective for the processing of friction vibration signal and the identification of vibration excitation source. The findings will provide ideas for the frictional vibration signal processing and basis for further research in the field of tribology of dry gas seal ring.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0084/
Details
Keywords
Jungang Wang, Xincheng Bi and Ruina Mo
The electromechanical planetary transmission system has the advantages of high transmission power and fast running speed, which is one of the important development directions in…
Abstract
Purpose
The electromechanical planetary transmission system has the advantages of high transmission power and fast running speed, which is one of the important development directions in the future. However, during the operation of the electromechanical planetary transmission system, friction and other factors will lead to an increase in gear temperature and thermal deformation, which will affect the transmission performance of the system, and it is of great significance to study the influence of the temperature effect on the nonlinear dynamics of the electromechanical planetary system.
Design/methodology/approach
The effects of temperature change, motor speed, time-varying meshing stiffness, meshing damping ratio and error amplitude on the nonlinear dynamic characteristics of electromechanical planetary systems are studied by using bifurcation diagrams, time-domain diagrams, phase diagrams, Poincaré cross-sectional diagrams, spectra, etc.
Findings
The results show that when the temperature rise is less than 70 °C, the system will exhibit chaotic motion. When the motor speed is greater than 900r/min, the system enters a chaotic state. The changes in time-varying meshing stiffness, meshing damping ratio, and error amplitude will also make the system exhibit abundant bifurcation characteristics.
Originality/value
Based on the principle of thermal deformation, taking into account the temperature effect and nonlinear parameters, including time-varying meshing stiffness and tooth side clearance as well as comprehensive errors, a dynamic model of the electromechanical planetary gear system was established.
Details
Keywords
K.G. Rumesh Samarawickrama, U.G. Samudrika Wijayapala and C.A. Nandana Fernando
The purpose of this study is to extract and characterize a novel natural dye from the leaves of Lannea coromandelica and the extraction with finding ways of dyeing cotton fabric…
Abstract
Purpose
The purpose of this study is to extract and characterize a novel natural dye from the leaves of Lannea coromandelica and the extraction with finding ways of dyeing cotton fabric using three mordants.
Design/methodology/approach
The colouring agents were extracted from the leaves of Lannea coromandelica using an aqueous extraction method. The extract was characterized using analysis methods of pH, gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared (FTIR), ultraviolet-visible (UV-vis) and cyclic voltammetry measurement. The extract was applied to cotton fabric samples using a non-mordant and three mordants under the two mordanting methods. The dyeing performance of the extracted colouring agent was evaluated using colour fastness properties, colour strength (K/S) and colour space (CIE Lab).
Findings
The aqueous dye extract showed reddish-brown colour, and its pH was 5.94. The GC-MS analysis revealed that the dye extract from the leaves of Lannea coromandelica contained active chemical compounds. The UV-vis and FTIR analyses found that groups influenced the reddish-brown colour of the dye extraction. The cyclic voltammetry measurements discovered the electrochemical properties of the dye extraction. The mordanted fabric samples showed better colour fastness properties than the non-mordanted fabric sample. The K/S and CIE Lab results indicate that the cotton fabric samples dyed with mordants showed more significant dye affinities than non-mordanted fabric samples.
Originality/value
Researchers have never discovered that the Lannea coromandelica leaf extract is a natural dye for cotton fabric dyeing. The findings of this study showed that natural dyes extracted from Lannea coromandelica leaf could be an efficient colouring agent for use in cotton fabric.
Details
Keywords
Yuefei Ji, Long Hao, Jianqiu Wang and Wei Ke
The purpose of this paper is to introduce cyclic electrochemical impedance spectroscopy (EIS) method to understand the corrosion evolution behavior of structural materials in…
Abstract
Purpose
The purpose of this paper is to introduce cyclic electrochemical impedance spectroscopy (EIS) method to understand the corrosion evolution behavior of structural materials in secondary circuit water environments of pressurized water reactor (PWR) system.
Design/methodology/approach
The cyclic EIS has been used to understand the corrosion evolution of 304 stainless steel (SS) in simulated secondary circuit water environment. Scanning electron microscopy and X-ray photoelectron spectroscopy have been used to characterize the microstructure and corrosion morphology of 304 SS sample.
Findings
Cyclic EIS measurement is applicable in gaining information on the corrosion evolution of 304 SS in high-temperature and high-pressure (HTHP) water environments. Based on analyses of the cyclic EIS data, it is considered that the measured EIS response of 304 SS sample under HTHP water environment mainly comes from the compact inner part of the newly formed oxide layer, which gradually inhibits the progress of electrochemical reactions at the oxide layer/substrate interface.
Originality/value
The cyclic EIS has been introduced into HTHP water environment, and its reliability has been evaluated. It may find a wide application in corrosion studies of materials under HTHP water environments, which is critical for a safe operation in nuclear power plants and beneficial for the development of corrosion-resistant materials in PWR system.
Details
Keywords
Kexin Ma, Jianxin Deng, Yichen Bao, Zhihui Zhang and Junyan Wang
Liquid-assisted laser surface texturing technology was used to create composite microtextures on triangular guide rail surfaces to enhance their tribological properties.
Abstract
Purpose
Liquid-assisted laser surface texturing technology was used to create composite microtextures on triangular guide rail surfaces to enhance their tribological properties.
Design/methodology/approach
Numerical simulations were used to investigate the impact of various microtextures on fluid dynamic lubrication. Reciprocating friction and wear tests, followed by mechanistic analysis, examined the combined tribological effects of microtextured surfaces and lubricants.
Findings
The numerical simulation outcomes reveal a significant augmentation in the influence of fluid dynamic pressure due to composite microtextures, consequently amplifying the load-bearing capacity of the oil film. The average friction coefficient of composite microtextured samples was approximately 0.136 in reciprocating pin-on-disk friction tests, representing approximately 17% decrease compared to polished samples. Triangular guide rails with composite microtextures demonstrated the lowest average coefficient under conditions of high-speed and heavy-loading in the reciprocating friction and wear tests. Additionally, the presence of composite microtextures was found to promote the formation of adsorbed and friction films during friction, potentially contributing to the enhancement of tribological properties.
Originality/value
Triangular guide rails face high friction and wear, limiting their stability in demanding applications like machine tool guideways. This paper proposes a novel approach for steel triangular guide rails, involving composite microtexturing, numerical fluid simulations, liquid-assisted laser surface texturing and friction-wear testing. By implementing composite microtextures, the method aims to reduce friction coefficients and extend guideway service life, thereby saving energy and reducing maintenance costs. Enhancing the antifriction and antiwear properties of machine tool guideways is crucial for improving performance and longevity.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2024-0183/
Details
Keywords
Pan Hao, Yuchao Dun, Jiyun Gong, Shenghui Li, Xuhui Zhao, Yuming Tang and Yu Zuo
Organic coatings are widely used for protecting metal equipment and structures from corrosion. Accurate detection and evaluation of the protective performance and service life of…
Abstract
Purpose
Organic coatings are widely used for protecting metal equipment and structures from corrosion. Accurate detection and evaluation of the protective performance and service life of coatings are of great importance. This paper aims to review the research progress on performance evaluation and lifetime prediction of organic coatings.
Design/methodology/approach
First, the failure forms and aging testing methods of organic coatings are briefly introduced. Then, the technical status and the progress in the detection and evaluation of coating protective performance and the prediction of service life are mainly reviewed.
Findings
There are some key challenges and difficulties in this field, which are described in the end.
Originality/value
The progress is summarized from a variety of technical perspectives. Performance evaluation and lifetime prediction include both single-parameter and multi-parameter methods.
Details
Keywords
Eman Salim, Wael S. Mohamed and Rasha Sadek
Paper aims to evaluate the efficiency of traditional chitosan, nano chitosan, and chitosan nanocomposites for consolidating aged papyrus samples. Cellulose-based materials, such…
Abstract
Purpose
Paper aims to evaluate the efficiency of traditional chitosan, nano chitosan, and chitosan nanocomposites for consolidating aged papyrus samples. Cellulose-based materials, such as papyrus sheets and paper, which are the most common types of writing supports for works of art in many museums and archive. They are subjected to different types of deterioration factors that may lead to many conservation problems. Consolidation treatment is one of the most common conservation treatments, which should have perform after much testing to select the appropriate consolidants.
Design/methodology/approach
This research paper aims to evaluate the resistance of traditional chitosan, nanochitosan and chitosan/zinc oxide nanocomposite as an eco-friendly papyrus strengthening. Untreated and treated papyrus was thermally aged and characterized via scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity of the papyrus specimens was also determined against four tested pathogenic bacteria by disc diffusion method: MRSA, Staphylococcus aureus, E. coli and P. aeruginosa.
Findings
The results revealed that chitosan nanocomposite showed a remarkable enhancement of papyrus tensile properties and presence of ZnO prevents the effects of biodeterioration.
Originality/value
Zinc oxide nanoparticles enhance the optical properties and increase the chemical reactions between the consolidating material and the treated papyrus.
Details
Keywords
Thien Vuong Nguyen, Vy Do Truc, Tuan Anh Nguyen and Dai Lam Tran
This study aims to explore the synergistic effect of oxide nanoparticles (ZnO, Fe2O3, SiO2) and cerium nitrate inhibitor on anti-corrosion performance of epoxy coating. First…
Abstract
Purpose
This study aims to explore the synergistic effect of oxide nanoparticles (ZnO, Fe2O3, SiO2) and cerium nitrate inhibitor on anti-corrosion performance of epoxy coating. First, cerium nitrate inhibitors are absorbed on the surface of various oxide nanoparticles. Thereafter, epoxy nanocomposite coatings have been fabricated on carbon steel substrate using these oxide@Ce nanoparticles as both nano-fillers and nano-inhibitors.
Design/methodology/approach
To evaluate the impact of oxides@Ce nanoparticles on mechanical properties of epoxy coating, the abrasion resistance and impact resistance of epoxy coatings have been examined. To study the impact of oxides@Ce nanoparticles on anti-corrosion performance of epoxy coating for steel, the electrochemical impedance spectroscopy has been carried out in 3% NaCl solution.
Findings
ZnO@Ce3+ and SiO2@Ce3+ nanoparticles provide more enhancement in the epoxy pore network than modification of the epoxy/steel interface. Whereas, Fe2O3@Ce3+ nanoparticles have more to do with modification of the epoxy/steel interface than to change the epoxy pore network.
Originality/value
Incorporation of both oxide nanoparticles and inorganic inhibitor into the epoxy resin is a promising approach for enhancing the anti-corrosion performance of carbon steel.
Peter Kačmáry, Peter Bindzár, Jakub Kovalčík and Marek Ondov
The purpose of this paper is to apply and verify Fourier series analysis in combination with non-linear regression as a tool of forecasting and planning of inputs in the logistics…
Abstract
Purpose
The purpose of this paper is to apply and verify Fourier series analysis in combination with non-linear regression as a tool of forecasting and planning of inputs in the logistics process of a retail chain store.
Design/methodology/approach
For many popular products, a significant effect of seasonality of sales is expected; therefore, the method of Fourier series was chosen as one of the main forecast calculation techniques. However, the use of this method directly for forecasting sales has a limitation in the form of a complete reconstruction of the shape of the curve from of the given monitored time. Thus, the forecast is based only on the significant harmonic components from the Fourier series analysis that will participate in forecast forming. In addition, to respect the trend of series, the results of Fourier series analysis are combined with the non-linear regression.
Findings
The results showed that the number of significant harmonic components from the Fourier series analysis is suitable to reflect the future behaviour of the sale in standard market conditions. Forecasting of the sale and accurate purchase planning of goods has a positive effect on reducing the waste of unsold products after their shelf and on increasing of a customer satisfaction.
Research limitations/implications
This study has an application in a certain period of time (relatively calm behaviour of the food market) and only for a certain region. Therefore, it is not possible to generalize these results as the behaviour of consumers, e.g. within the state. It will also be interesting to monitor and forecast sales of other food items.
Practical implications
This provides a practical and relatively simple tool for implementing or improving the process of forecasting seasonally dependent products in the food industry.
Originality/value
This study shows the possibility of forecast that is based on adding the significant harmonic components from the Fourier series analysis to form forecast with the non-linear regression.