Fareha Asim, Farhana Naeem and Shenela Naqvi
Face masks are the most recommended precautionary measure since the emergence of SARS-CoV-2 since 2020 and the most useful PPE against this virus and its variants so far. This…
Abstract
Purpose
Face masks are the most recommended precautionary measure since the emergence of SARS-CoV-2 since 2020 and the most useful PPE against this virus and its variants so far. This study aims to develop reusable and biodegradable mask from 100% regenerated bamboo or/and its blend. Selection of natural and regenerated textile materials is to minimize generation of solid waste. This attempt will eventually protect our earth by minimizing or better discontinuing the production of the disposable nonbiodegradable face masks available worldwide.
Design/methodology/approach
Hundred percent regenerated bamboo and 50:50 bamboo:cotton were selected to knit plain and interlock fabrics for manufacturing of reusable sustainable face masks. A 23 32-mixed-level factorial design was applied to study the effect of liquor ratio and temperatures, fabric structure, blend ratios and finishes at three different levels. Model 23 32 has two factors (liquor ratio and temperatures) at three levels and three factors (fabric structure, blend ratios and type of finish) at two levels. Knitted fabrics were then applied with antibacterial finishes; sanitized T99-19 and sanitized T27-22, separately at three different liquor ratios (1:10, 1:12 and 1:15) and temperatures (45, 55 and 65 °C) via exhaust method. After completing processing, fabric thickness, pilling resistance, dimensional stability, bursting strength, Berger whiteness index, air permeability and antibacterial properties of each trial were evaluated using standard test procedures.
Findings
Selected fabrics treated either by sanitized T27 or sanitized T99 in a liquor ratio of 1:15 against 65 °C, showed excellent bacteriostatic/bactericidal activity. However, 100% regenerated bamboo interlock knitted fabric treated with sanitized T99 in a liquor ratio of 1:15 at 65 °C has the most desired values of dimensional stability, pilling resistance, Berger whiteness, fabric thickness, air permeability and bursting strength which made it the best for the manufacturing of the masks. Reusable mask is comprised of three layers in which the first and the third layers were of selected 100% regenerated bamboo fabric while a PM2.5 filter was inserted in between. Bacterial filtration efficiency, particle filtration efficiency, biocompatibility and microbial cleanliness will be evaluated in future, to compare the performance of proposed reusable and biodegradable face mask with N95 masks and other fabric masks available commercially.
Originality/value
This study resulted in a development of reusable eco-friendly facemask which was not attempted by the preceding investigations. Outcomes of this work pave the way for a greener and safer earth by using easily obtainable regenerated bamboo fabrics, antibacterial finishes and knitted structures.
Details
Keywords
Hammama Irfan, Tahreem Beg, Farhana Naeem, Mohammad Irfan, Shenela Naqvi and Yang Shengyuan
The purpose of this study is to highlight the threats related to the utilization of synthetic fibers. Volatile organic compounds, particulates and acid gases are released during…
Abstract
Purpose
The purpose of this study is to highlight the threats related to the utilization of synthetic fibers. Volatile organic compounds, particulates and acid gases are released during the production of polyester and other synthetic textiles. Polyester is problematic solid waste material as it takes centuries to break down and hence causes microplastic pollution. Biodegradable synthetic solutions for the replacement of polyester are a sustainable business marketing these days. The naNia fiber is the breakthrough product and it is claimed a biodegradable, compostable and toxin-free polymer.
Design/methodology/approach
In this research, fabric constructed of naNia fiber was dyed with the extract of naturally occurring Lawsonia inermis (henna) plant leaves. The henna dye was extracted in water and ethanol using different methods, and the better extract was selected by the evaluation of ultraviolet-visible spectroscopy and phytochemical analysis. Henna with ethanol extract showed more desirable results hence it was selected to dye naNia fabric. To improve dyeability, premordanting, simultaneous mordanting and postmordanting were done using chitosan, fresh lemon extract and tannic acid, respectively. The dyed fabric samples were subjected to color strength analysis and multiple colorfastness tests.
Findings
The colorfastness test has shown good to excellent results. Scanning electron microscope analysis had also shown the attachment of dye molecules to the filaments. This study revealed that henna dye is appropriate to color naNia fiber even without the aid of a mordant.
Originality/value
For the first time, toxicant-free, biodegradable polyester (naNia) is successfully dyed with sustainable and naturally available dyes and mordants.