Search results

1 – 2 of 2
Article
Publication date: 4 October 2022

Mohammed Hamza Momade, Serdar Durdyev, Saurav Dixit, Shamsuddin Shahid and Abubakar Kori Alkali

Construction projects in Malaysia are often delayed and over budget due to heavy reliance on labor. Linear regression (LR) models have been used in most labor cost (LC) studies…

Abstract

Purpose

Construction projects in Malaysia are often delayed and over budget due to heavy reliance on labor. Linear regression (LR) models have been used in most labor cost (LC) studies, which are less accurate than machine learning (ML) tools. Construction management applications have increasingly used ML tools in recent years and have greatly impacted forecasting. The research aims to identify the most influential LC factors using statistical approaches, collect data and forecast LC models for improved forecasts of LC.

Design/methodology/approach

A thorough literature review was completed to identify LC factors. Experienced project managers were administered to rank the factors based on importance and relevance. Then, data were collected for the six highest ranked factors, and five ML models were created. Finally, five categorical indices were used to analyze and measure the effectiveness of models in determining the performance category.

Findings

Worker age, construction skills, worker origin, worker training/education, type of work and worker experience were identified as the most influencing factors on LC. SVM provided the best in comparison to other models.

Originality/value

The findings support data-driven regulatory and practice improvements aimed at improving labor issues in Malaysia, with the possibility for replication in other countries facing comparable problems.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 13 December 2023

Nivin Vincent and Franklin Robert John

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to…

Abstract

Purpose

This study aims to understand the current production scenario emphasizing the significance of green manufacturing in achieving economic and environmental sustainability goals to fulfil future needs; to determine the viability of particular strategies and actions performed to increase the process efficiency of electrical discharge machining; and to uphold the values of sustainability in the nonconventional manufacturing sector and to identify future works in this regard.

Design/methodology/approach

A thorough analysis of numerous experimental studies and findings is conducted. This prominent nontraditional machining process’s potential machinability and sustainability challenges are discussed, along with the current research to alleviate them. The focus is placed on modifications to the dielectric fluid, choosing affordable substitutes and treating consumable tool electrodes.

Findings

Trans-esterified vegetable oils, which are biodegradable and can be used as a substitute for conventional dielectric fluids, provide pollution-free machining with enhanced surface finish and material removal rates. Modifying the dielectric fluid with specific nanomaterials could increase the machining rate and demonstrate a decrease in machining flaws such as micropores, globules and microcracks. Tool electrodes subjected to cryogenic treatment have shown reduced tool metal consumption and downtime for the setup.

Practical implications

The findings suggested eco-friendly machining techniques and optimized control settings that reduce energy consumption, lowering operating expenses and carbon footprints. Using eco-friendly dielectrics, including vegetable oils or biodegradable dielectric fluids, might lessen the adverse effects of the electrical discharge machine operations on the environment. Adopting sustainable practices might enhance a business’s reputation with the public, shareholders and clients because sustainability is becoming increasingly significant across various industries.

Originality/value

A detailed general review of green nontraditional electrical discharge machining process is provided, from high-quality indexed journals. The findings and results contemplated in this review paper can lead the research community to collectively apply it in sustainable techniques to enhance machinability and reduce environmental effects.

Details

World Journal of Engineering, vol. 22 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Access

Year

Last 12 months (2)

Content type

1 – 2 of 2