Search results

1 – 1 of 1
Open Access
Article
Publication date: 12 December 2023

Laura Lucantoni, Sara Antomarioni, Filippo Emanuele Ciarapica and Maurizio Bevilacqua

The Overall Equipment Effectiveness (OEE) is considered a standard for measuring equipment productivity in terms of efficiency. Still, Artificial Intelligence solutions are rarely…

1493

Abstract

Purpose

The Overall Equipment Effectiveness (OEE) is considered a standard for measuring equipment productivity in terms of efficiency. Still, Artificial Intelligence solutions are rarely used for analyzing OEE results and identifying corrective actions. Therefore, the approach proposed in this paper aims to provide a new rule-based Machine Learning (ML) framework for OEE enhancement and the selection of improvement actions.

Design/methodology/approach

Association Rules (ARs) are used as a rule-based ML method for extracting knowledge from huge data. First, the dominant loss class is identified and traditional methodologies are used with ARs for anomaly classification and prioritization. Once selected priority anomalies, a detailed analysis is conducted to investigate their influence on the OEE loss factors using ARs and Network Analysis (NA). Then, a Deming Cycle is used as a roadmap for applying the proposed methodology, testing and implementing proactive actions by monitoring the OEE variation.

Findings

The method proposed in this work has also been tested in an automotive company for framework validation and impact measuring. In particular, results highlighted that the rule-based ML methodology for OEE improvement addressed seven anomalies within a year through appropriate proactive actions: on average, each action has ensured an OEE gain of 5.4%.

Originality/value

The originality is related to the dual application of association rules in two different ways for extracting knowledge from the overall OEE. In particular, the co-occurrences of priority anomalies and their impact on asset Availability, Performance and Quality are investigated.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Access

Year

Last 12 months (1)

Content type

1 – 1 of 1