Search results

1 – 8 of 8
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 30 August 2024

A. Zeeshan, Hamza Javed, N. Shehzad, Sadiq M. Sait and R. Ellahi

This study aims to examine the cilia-driven flow of magnetohydrodynamics (MHD) non-Newtonian fluid through a porous medium. The Jeffrey fluid model is taken into account. The…

29

Abstract

Purpose

This study aims to examine the cilia-driven flow of magnetohydrodynamics (MHD) non-Newtonian fluid through a porous medium. The Jeffrey fluid model is taken into account. The fluid motion in a two-dimensional symmetric channel emphasizes the dominance of viscous properties over inertial properties in the context of long wavelength and low Reynolds number approximations.

Design/methodology/approach

An integrated numerical and analytic results are obtained by hybrid approach. A statistical method analysis of variance along with response surface methodology is used. Sensitivity analysis is used to validate the accuracy of nondimensional numbers.

Findings

The impact of various flow parameters is presented graphically and in numerical tables. It is noted that the velocity slip parameter is the most sensitive flow parameter in velocity and relaxation to retardation time ratio in temperature.

Originality/value

A model on cilia-generated flow of MHD non-Newtonian Jeffrey fluid is proposed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 16 January 2025

Junaid Mehboob, R. Ellahi, Sadiq M. Sait and Noreen Sher Akbar

This paper aims to optimize bioconvective heat transfer for magnetohydrodynamics Eyring–Powell nanofluids containing motile microorganisms with variable viscosity and porous media…

14

Abstract

Purpose

This paper aims to optimize bioconvective heat transfer for magnetohydrodynamics Eyring–Powell nanofluids containing motile microorganisms with variable viscosity and porous media in ciliated microchannels.

Design/methodology/approach

The flow problem is first modeled in the two-dimensional frame and then simplified under low Reynolds number and long wavelength approximations. The numerical method is used to examine the impact of thermal radiation, temperature-dependent viscosity, mixed convection, magnetic fields, Ohmic heating and porous media for velocity, temperature, concentration and motile microorganisms. Graphical results are presented to observe the impact of physical parameters on pressure rise, pressure gradient and streamlines.

Findings

It is observed that the temperature of nanofluid decreases with higher values of the viscosity parameter. It is absolutely in accordance with the physical expectation as the radiation parameter increases, the heat transfer rate at the boundary decreases. Nanoparticle concentration increases by increasing the values of bioconvection Rayleigh number. The density of motile microorganisms decreases when bioconvection Peclet number is increased. The velocity of the nanofluid decreases with higher value of Darcy number. With increase in the value of bioconvection parameter, the flow of nanofluid is increased.

Originality/value

The bioconvective peristaltic movement of magnetohydrodynamic nanofluid in ciliated media is proposed. The non-Newtonian behavior of the fluid is described by using an Eyring–Powell fluid model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 35 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 16 July 2024

Fehid Ishtiaq, R. Ellahi, M.M. Bhatti and Sadiq M. Sait

Cilia serves numerous biological functions in the human body. Malfunctioning of nonmotile or motile cilia will have different kinds of consequences for human health. More…

70

Abstract

Purpose

Cilia serves numerous biological functions in the human body. Malfunctioning of nonmotile or motile cilia will have different kinds of consequences for human health. More specifically, the directed and rhythmic beat of motile cilia facilitates the unidirectional flow of fluids that are crucial in both homeostasis and the development of ciliated tissues. In cilia-dependent hydrodynamic flows, tapering geometries look a lot like the structure of biological pathways and vessels, like airways and lymphatic vessels. In this paper, the Carreau fluid model through the cilia-assisted tapered channel (asymmetric) under the influence of induced magnetic field and convective heat transfer is investigated.

Design/methodology/approach

Lubrication theory is a key player in the mathematical formulation of momentum, magnetic field and energy equations. The formulated nonlinear and coupled differential equations are solved with the aid of the homotopy perturbation method (HPM). The graphical results are illustrated with the help of the computational software “Mathematica.”

Findings

The impact of diverse emerging physical parameters on velocity, induced magnetic field, pressure rise, current density and temperature profiles is presented graphically. It is observed that the cilia length parameter supported the velocity and current density profiles, while the Hartman number and Weissenberg number were opposed. A promising effect of emerging parameters on streamlines is also perceived.

Originality/value

The study provides novel aspects of cilia-driven induced magnetohydrodynamics flow of Carreau fluid under the influence of induced magnetic field and convective heat transfer through the asymmetric tapered channel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 9 July 2024

Maryam Fatima, Ayesha Sohail, Youming Lei, Sadiq M. Sait and R. Ellahi

Enzymes play a pivotal role in orchestrating essential biochemical processes and influencing various cellular activities in tissue. This paper aims to provide the process of…

81

Abstract

Purpose

Enzymes play a pivotal role in orchestrating essential biochemical processes and influencing various cellular activities in tissue. This paper aims to provide the process of enzyme diffusion within the tissue matrix and enhance the nano system performance by means of the effectiveness of enzymatic functions. The diffusion phenomena are also documented, providing chemical insights into the complex processes governing enzyme movement.

Design/methodology/approach

A computational analysis is used to develop and simulate an optimal control model using numerical algorithms, systematically regulating enzyme concentrations within the tissue scaffold.

Findings

The accompanying videographic footages offer detailed insights into the dynamic complexity of the system, enriching the reader’s understanding. This comprehensive exploration not only contributes valuable knowledge to the field but also advances computational analysis in tissue engineering and biomimetic systems. The work is linked to biomolecular structures and dynamics, offering a detailed understanding of how these elements influence enzymatic functions, ultimately bridging the gap between theoretical insights and practical implications.

Originality/value

A computational predictive model for nanozyme that describes the reaction diffusion dynamics process with enzyme catalysts is yet not available in existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 12 March 2024

Atifa Kanwal, Ambreen A. Khan, Sadiq M. Sait and R. Ellahi

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid…

67

Abstract

Purpose

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid. This study aims to highlight the effects of varying density of particles in a fluid. The fluid flows through a wavy curved passage under an applied magnetic field. Heat transfer is discussed with variable thermal conductivity.

Design/methodology/approach

The mathematical model of the problem consists of coupled differential equations, simplified using stream functions. The results of the time flow rate for fluid and solid granules have been derived numerically.

Findings

The fluid and dust particle velocity profiles are being presented graphically to analyze the effects of density of solid particles, magnetohydrodynamics, curvature and slip parameters. Heat transfer analysis is also performed for magnetic parameter, density of dust particles, variable thermal conductivity, slip parameter and curvature. As the number of particles in the fluid increases, heat conduction becomes slow through the fluid. Increase in temperature distribution is noticed as variable thermal conductivity parameter grows. The discussion of variable thermal conductivity is of great concern as many biological treatments and optimization of thermal energy storage system’s performance require precise measurement of a heat transfer fluid’s thermal conductivity.

Originality/value

This study of heat transfer with inhomogeneous distribution of the particles in a fluid has not yet been reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 30 August 2024

A. Gholami, S. F. Hosseini, Kamel Milani Shirvan, Sadiq M. Sait and R. Ellahi

Due to the abundant use of granular materials in chemical industries, it is inevitable to store raw materials and products in bulk in silos. For this reason, much research has…

20

Abstract

Purpose

Due to the abundant use of granular materials in chemical industries, it is inevitable to store raw materials and products in bulk in silos. For this reason, much research has been carried out in the field of construction, operation and maintenance of silos. One of the important issues that must be investigated in silos is the behavior of their structure when the materials inside them are unloaded. Structural vibrations and the creation of normal noise usually discharge the granular of material from the silo. Both of phenomena are undesirable due to the problems they can cause to the structure and its surroundings. According to the said issues, this paper aims to investigate the vibration problem of the sulfur storage silo of the first refinery during discharge with the help of measuring experimental vibration data and simulating the silo model.

Design/methodology/approach

In the experimental investigation, the main cause of the vibration of the 400-ton silo in the refinery is used. The mass asymmetry phenomenon when the silo is filled is also considered. The experimental results are authenticated by software analysis too.

Findings

The results showed that the natural frequency of the ninth mode is almost equal to the natural frequency of sulfur discharge from the silos and has the largest shape change in the structure and vibration range. It is also concluded that the larger sulfur silo (400 tons) should be prioritized over the smaller sulfur silo (200 tons) in the emptying program, and the 400 tons silo should never be emptied even through the 200 tons silo is empty.

Originality/value

An attempt is made to investigate the issue of vibration in sulfur storage silos in the first refinery of South Pars in the form of experimental investigation and modal analysis.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Available. Open Access. Open Access
Article
Publication date: 22 October 2024

Long Kim and Sook Fern Yeo

Lacking lecturers in higher education is an international issue where society faces insufficient educational services to enlighten one’s future, and lecturer work satisfaction…

416

Abstract

Purpose

Lacking lecturers in higher education is an international issue where society faces insufficient educational services to enlighten one’s future, and lecturer work satisfaction also merits higher attention. Work satisfaction is closely associated with turnover rates, lecturer retention, overall university cohesion, lecturers’ well-being, professional teaching improvement and research and publication performances. This study aims to explore how causes of actions (work–family conflict [WFC] and workload) influence consequences (stress and burnout) which affect the overall attitude (lecturer work satisfaction).

Design/methodology/approach

Researchers collected data from 450 Thai lecturers from different universities via survey questionnaires. Furthermore, a structural equation model method was used to analyze the data.

Findings

Results showed that lecturer stress was significantly influenced by WFC and workload. Next, stress, workload and WFC were the main predictors of lecturer burnout. Then, lecturer work satisfaction was significantly influenced by burnout, except stress. Finally, a relationship between lecturer stress and work satisfaction was mediated by burnout.

Originality/value

This research proposes a theoretical mechanism to analyze how causes of actions (WFC and workload) influence consequences (stress and burnout) which lead to a development of lecturer attitude (work satisfaction) in higher education.

Details

The TQM Journal, vol. 36 no. 9
Type: Research Article
ISSN: 1754-2731

Keywords

Access Restricted. View access options
Article
Publication date: 13 January 2025

Imene Guermazi, Aida Smaoui and Mohamed Chabchoub

This paper focuses on the commitment of a leading Middle Eastern country – Saudi Arabia – to the United Nations (UN) Sustainable Development Goals (SDGs), particularly SDG13…

22

Abstract

Purpose

This paper focuses on the commitment of a leading Middle Eastern country – Saudi Arabia – to the United Nations (UN) Sustainable Development Goals (SDGs), particularly SDG13, climate preservation. This paper aims to investigate the determinants of greenhouse gas emissions by examining their correlation with economic growth, population growth, renewable energies, forest area, digitalization and monetary policy.

Design/methodology/approach

This research observes greenhouse gas (GHG) emissions and the potential influencing factors during 1990–2023. It employs the autoregressive distributed lag model (ARDL) after testing the stationarity of the variables.

Findings

The findings show that population growth, gross domestic product (GDP) growth, percentage of individuals using the internet and forest rents are significant determinants of carbon oxide (CO2) emissions. Further, methane (CH4) emissions are significantly associated with population growth, GDP growth, percentage of individuals using the internet and renewable internal freshwater resources. Nitrous oxide (N2O) emissions depend significantly on the percentage of individuals using the internet and renewable internal freshwater resources.

Practical implications

This research helps policymakers in Saudi Arabia and worldwide identify the factors moderating GHG emissions, and accordingly design targeted interventions. These initiatives would substantially reduce GHG and further global climate goals. Additionally, focusing on Saudi Arabia, a significant emerging country in the Middle East, has broader implications. The findings offer insights that extend beyond its borders, providing valuable lessons for governments in the Middle East and worldwide to assess and improve their initiatives toward SDG13. Therefore, monitoring greenhouse gas emissions in this key country boosts global progress toward the UN’s 2030 Agenda for Sustainable Development. Furthermore, this paper aligns with the Principles for Responsible Management Education (PRME) by leveraging academic and managerial strategies toward sustainability and climate action initiatives.

Originality/value

This study adds to the limited literature on the determinants of GHG emissions in the Middle Eastern region, particularly in Saudi Arabia. In addition to CO2, it also focuses on CH4 and N2O emissions. It shows the beneficial effect of renewable internal freshwater resources. It uses the ARDL model to distinguish between the short- and long-run associations.

Details

Society and Business Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5680

Keywords

1 – 8 of 8
Per page
102050