Search results
1 – 2 of 2Sadia Samar Ali, Shahbaz Khan, Nosheen Fatma, Cenap Ozel and Aftab Hussain
Organisations and industries are often looking for technologies that can accomplish multiple tasks, providing economic benefits and an edge over their competitors. In this…
Abstract
Purpose
Organisations and industries are often looking for technologies that can accomplish multiple tasks, providing economic benefits and an edge over their competitors. In this context, drones have the potential to change many industries by making operations more efficient, safer and more economic. Therefore, this study investigates the use of drones as the next step in smart/digital warehouse management to determine their socio-economic benefits.
Design/methodology/approach
The study identifies various enablers impacting drone applications to improve inventory management, intra-logistics, inspections and surveillance in smart warehouses through a literature review, a test of concordance and the fuzzy Delphi method. Further, the graph theory matrix approach (GTMA) method was applied to ranking the enablers of drone application in smart/digital warehouses. In the subsequent phase, researchers investigated the relation between the drone application's performance and the enablers of drone adoption using logistic regression analysis under the TOE framework.
Findings
This study identifies inventory man agement, intra-logistics, inspections and surveillance are three major applications of drones in the smart warehousing. Further, nine enablers are identified for the adoption of drone in warehouse management. The findings suggest that operational effectiveness, compatibility of drone integration and quality/value offered are the most impactful enablers of drone adoption in warehouses. The logistic regression findings are useful for warehouse managers who are planning to adopt drones in a warehouse for efficient operations.
Research limitations/implications
This study identifies the enablers of drone adoption in the smart and digital warehouse through the literature review and fuzzy Delphi. Therefore, some enablers may be overlooked during the identification process. In addition to this, the analysis is based on the opinion of the expert which might be influenced by their field of expertise.
Practical implications
By considering technology-organisation-environment (TOE) framework warehousing companies identify the opportunities and challenges associated with using drones in a smart warehouse and develop strategies to integrate drones into their operations effectively.
Originality/value
This study proposes a TOE-based framework for the adoption of drones in warehouse management to improve the three prominent warehouse functions inventory management, intra-logistics, inspections and surveillance using the mixed-method.
Details
Keywords
Reham Tarek Alnounou, Rawan Ahmed Asiri, Sara Ayman Alhindi, Layan Marwan Shams, Sadia Samar Ali and Eren Özceylan
Saudi Arabia's 2030 vision targets an increase of 34% in non-oil revenue participation in the GDP, thus the need for automation and digital transformation. The Company ER is a…
Abstract
Purpose
Saudi Arabia's 2030 vision targets an increase of 34% in non-oil revenue participation in the GDP, thus the need for automation and digital transformation. The Company ER is a market leader producing high-quality dairy products in the Kingdom and is a pioneer in the production industry. The company has recently increased the capacity of its milk factory to meet its vision. An investment was made to automate the pallet handling procedures at the milk factory to provide increased production for daily consumption. The new automation transition in Company ER's milk factory provides a unique opportunity to utilize lean management tools to improve the current automated processes before commercialization.
Design/methodology/approach
OEE (overall equipment effectiveness) will monitor losses for different operational losses in the new automated system and indicate system improvements, with 85% as the target. Based on DMADV (design, measure, analyze, design and validate) methodology, this study analyzes the entire automated pallet handling system. It uses lean tools to identify areas for improvement, identify waste elements and propose solutions to achieve Company ER's OEE targets.
Findings
In this paper, the outcomes will be presented as documented solutions that address the losses encountered in the production system, showing a 12.8% increase in the system's OEE.
Research limitations/implications
Owing the time and resource constraint, this study only involved automated pallet handling procedures in a milk production facility. Hence, the generalization of the result is slightly limited. More studies in several different processes and sectors are required.
Practical implications
This study provided a valuable tool for researchers for gaining deeper understanding regarding the lean manufacturing and its implementation. For practitioners, it is useful to evaluate the degree of lean manufacturing tools in their material handling systems.
Originality/value
This study is the first attempt to develop lean manufacturing constructs for evaluating the automated pallet handling procedures in a milk production facility.
Details