Search results

1 – 2 of 2
Article
Publication date: 24 February 2022

Jamil Razmak

This paper proposes a Web-based patient portal based on the electronic medical record. Such a portal can allow patients to manage their own health care, reduce health-care visits…

Abstract

Purpose

This paper proposes a Web-based patient portal based on the electronic medical record. Such a portal can allow patients to manage their own health care, reduce health-care visits and significantly improve the quality of their health care.

Design/methodology/approach

A patient portal prototype and an accompanying online survey were distributed to assess the adoption readiness among a group of people in the United Arab Emirates (UAE).

Findings

The results from 470 survey participants demonstrated an enhanced awareness of this technology, and support the study hypotheses indicating that both intrinsic and extrinsic factors are important when considering the implementation of a patient portal in the UAE.

Originality/value

This study adds value to the few research studies undertaken in the Middle East discussing online health information technology and its adoption and usage among the population at large. The extended technology acceptance model, which contains two additional constructs, had not been previously validated in terms of a patient portal in the UAE, according to the author’s knowledge, adding more value. The UAE’s health-care system must use the benefits from the available IT infrastructure to provide a user-friendly online portal to encourage patients to manage their health care and health information.

Details

Journal of Science and Technology Policy Management, vol. 15 no. 4
Type: Research Article
ISSN: 2053-4620

Keywords

Open Access
Article
Publication date: 25 April 2024

Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Paulo Vaz-Pires and Augusto Barata da Rocha

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process…

2004

Abstract

Purpose

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters, environmental impacts, advantages, and limitations.

Design/methodology/approach

The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.

Findings

The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for 24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.

Originality/value

AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit environmental and marine species’ habitats.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

Last 12 months (2)

Content type

1 – 2 of 2