Search results
1 – 2 of 2Paluru Sreedevi and P. Sudarsana Reddy
This paper aims to numerically examine the impact of gyrotactic microorganisms and radiation on heat transport features of magnetic nanoliquid within a closed cavity…
Abstract
Purpose
This paper aims to numerically examine the impact of gyrotactic microorganisms and radiation on heat transport features of magnetic nanoliquid within a closed cavity. Thermophoresis, chemical reaction and Brownian motion are also considered in flow geometry for the moment of nanoparticles.
Design/methodology/approach
Finite element method (FEM) was depleted to numerically approximate the temperature, momentum, concentration and microorganisms concentration of the nanoliquid. The present simulation was unsteady state, and the resulting transformed equations are simulated by FEM-based Mathematica algorithm.
Findings
It has been found that isotherm patterns get larger with increasing values of the magnetic field parameter. Additionally, numerical codes for rate of heat transport impedance inside the cavity with an increasing Brownian motion parameter values.
Originality/value
To the best of the authors’ knowledge, the research work carried out in this paper is new, and no part is copied from others’ works.
Details
Keywords
P. Sudarsana Reddy and Paluru Sreedevi
Buongiorno’s type nanofluid mass and heat transport appearances inside a cavity filled with gyrotactic microorganisms by captivating thermal radiation is analyzed in the present…
Abstract
Purpose
Buongiorno’s type nanofluid mass and heat transport appearances inside a cavity filled with gyrotactic microorganisms by captivating thermal radiation is analyzed in the present work. Finite element investigation is instigated to examine the converted momentum, temperature, concentration of microorganisms and concentration of nanofluid equations numerically.
Design/methodology/approach
Finite element investigation is instigated to examine the converted momentum, temperature, concentration of microorganisms and concentration of nanofluid equations numerically.
Findings
The sway of these influenced parameters on standard rates of heat transport, nanoparticles Sherwood number and Sherwood number of microorganisms is also illustrated through graphs. It is perceived that the rates of heat transport remarkably intensifies inside the cavity region with amplifying thermophoresis number values.
Originality/value
The research work carried out in this paper is original and no part is copied from others’ work.
Details