Search results

1 – 10 of 986
Open Access
Article
Publication date: 25 January 2024

Azwindini Isaac Ramaano

This study aims to examine Musina municipality’s tourism development status and plans with existing documents and respondents’ responses on their envisaged implications on tourism…

3610

Abstract

Purpose

This study aims to examine Musina municipality’s tourism development status and plans with existing documents and respondents’ responses on their envisaged implications on tourism development and sustainability initiatives in Vhembe District, Limpopo Province, South Africa.

Design/methodology/approach

Surveys, interviews and focus group discussions, supplemented by field observation and document reviews, gray literature alongside published literature, were applied. Subsequently, Microsoft Excel and cross-tabulation analysis orchestrated the analysis of the data.

Findings

The policy and strategy aspects contributing to the previous and actual tourism statuses in Musina municipality are defined. The study concludes that Musina Municipality has rich tourism possibilities but lacks a better tourism strategy to empower local communities. Nonetheless, it dwells in the most tourism-based landscape within the Vhembe District of Limpopo.

Originality/value

Musina Municipality is one of the driest areas in the north of Limpopo Province in South Africa. It is also marked by impoverished rural communities. Studies on sustainable tourism and development have increased in recent years. However, rare studies specialize in synergies within various forms of tourism. Also, significant resources to advance local communities in rural areas are not sufficiently appreciated.

Article
Publication date: 6 February 2024

Umer Farooq, Amara Bibi, Javeria Nawaz Abbasi, Ahmed Jan and Muzamil Hussain

This work aims to concentrate on the mixed convection of the stagnation point flow of ternary hybrid nanofluids towards vertical Riga plate. Aluminum trioxide (Al2O3), silicon…

Abstract

Purpose

This work aims to concentrate on the mixed convection of the stagnation point flow of ternary hybrid nanofluids towards vertical Riga plate. Aluminum trioxide (Al2O3), silicon dioxide (SiO2) and titanium dioxide (TiO2) are regarded as nanoparticles, with water serving as the base fluid. The mathematical model incorporates momentum boundary layer and energy equations. The Grinberg term for the viscous dissipation and the wall parallel Lorentz force coming from the Riga plate are taken into consideration in the context of the energy equation.

Design/methodology/approach

Through the use of appropriate nonsimilar transformations, the governing system is transformed into nonlinear nondimensional partial differential equations (PDEs). The numerical method bvp4c (built-in package for MATLAB) is used in this study to simulate governing equations using the local non-similarity (LNS) approach up to the second truncation level.

Findings

Numerous graphs and numerical tables expound on the physical properties of the nanofluid temperature and velocity profiles. The local Nusselt correlations and the drag coefficient for pertinent parameters have been computed in tabular form. Additionally, the temperature profile drops while the velocity profile increases when the mixed convection parameter is included to oppose the flow.

Originality/value

The fundamental goal of this work is to comprehend how ternary nanofluids move towards a vertical Riga plate in a mixed convective domain with stagnation point flow.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 April 2024

Sonali Khatua, Manoranjan Dash and Padma Charan Mishra

Ores and minerals are extracted from the earth’s crust depending on the type of deposit. Iron ore mines come under massive deposit patterns and have their own mine development and…

Abstract

Purpose

Ores and minerals are extracted from the earth’s crust depending on the type of deposit. Iron ore mines come under massive deposit patterns and have their own mine development and life cycles. This study aims to depict the development and life cycle of large open-pit iron ore mines and the intertwined organizational design of the departments/sections operated within the industry.

Design/methodology/approach

Primary data were collected on the site by participant observation, in-depth interviews of the field staff and executives, and field notes. Secondary data were collected from the literature review to compare and cite similar or previous studies on each mining activity. Finally, interactions were conducted with academic experts and top field executives to validate the findings. An organizational ethnography methodology was employed to study and analyse four large-scale iron ore mines of India’s largest iron-producing state, Odisha, from January to April 2023.

Findings

Six stages were observed for development and life cycle, and the operations have been depicted in a schematic diagram for ease of understanding. The intertwined functioning of organizational set-up is also discovered.

Originality/value

The paper will benefit entrepreneurs, mining and geology students, new recruits, and professionals in allied services linked to large iron ore mines. It offers valuable insights for knowledge enhancement, operational manual preparation and further research endeavours.

Details

Journal of Organizational Ethnography, vol. 13 no. 1
Type: Research Article
ISSN: 2046-6749

Keywords

Article
Publication date: 20 April 2023

Vamsi Desam and Pradeep Reddy CH

Several chaotic system-based encryption techniques have been presented in recent years to protect digital images using cryptography. The challenges of key distribution and…

Abstract

Purpose

Several chaotic system-based encryption techniques have been presented in recent years to protect digital images using cryptography. The challenges of key distribution and administration make symmetric encryption difficult. The purpose of this paper is to address these concerns, the novel hybrid partial differential elliptical Rubik’s cube algorithm is developed in this study as an asymmetric image encryption approach. This novel algorithm generates a random weighted matrix, and uses the masking method on image pixels with Rubik’s cube principle. Security analysis has been conducted, it enhances and increases the reliability of the proposed algorithm against a variety of attacks including statistical and differential attacks.

Design/methodology/approach

In this light, a differential elliptical model is designed with two phases for image encryption and decryption. A modified image is achieved by rotating and mixing intensities of rows and columns with a masking matrix derived from the key generation technique using a unique approach based on the elliptic curve and Rubik’s cube principle.

Findings

To evaluate the security level, the proposed algorithm is tested with statistical and differential attacks on a different set of test images with peak signal-to-noise ratio, unified average changed intensity and number of pixel change rate performance metrics. These results proved that the proposed image encryption method is completely reliable and enhances image security during transmission.

Originality/value

The elliptic curve–based encryption is hard to break by hackers and adding a Rubik’s cube principle makes it even more complex and nearly impossible to decode. The proposed method provides reduced key size.

Details

Journal of Engineering, Design and Technology, vol. 22 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 11 December 2024

Gollapalli Shankar and Siva Reddy Sheri

This research investigates the impact of Dufour effects and viscous dissipation on unsteady magnetohydrodynamic (MHD) natural convection in an incompressible, viscous, and…

Abstract

Purpose

This research investigates the impact of Dufour effects and viscous dissipation on unsteady magnetohydrodynamic (MHD) natural convection in an incompressible, viscous, and electrically conductive fluid over a vertically oscillating flat plate. The study highlights the significance of magnetic fields in influencing thermal and mass transfer, particularly in the context of thermal radiation. Computational fluid dynamics method including finite difference or finite element techniques can be used to crack the governing equations of the fluid flow. In this work, we used the finite element method (FEM) numerical technique to analyze the numerical behavior of unsteady boundary layer flow of Casson fluid with natural convection past an oscillating vertical plate. Key parameters such as skin friction, temperature, concentration, velocity and Sherwood numbers are derived and analyzed. The results demonstrate that viscous dissipation significantly elevates the fluid temperature, while an increase in the radiation parameter is associated with a decrease in internal friction at the plate. These findings provide critical insights into the interplay between thermal radiation and magnetic fields in MHD flows, with potential applications in engineering systems involving heat and mass transfer, such as cooling systems and material processing. This study underscores the importance of understanding these dynamics for optimizing the performance of MHD applications in various industrial settings.

Design/methodology/approach

The mainly authorized and energetic FEM to explain the non-linear, dimensionless partial differential equations (11–13) via equation with boundary conditions (14) makes use of Bathe (36), Reddy (37), Connor (38) and Chung (39). Following are the key steps that make up the method: discretize the domain, derivation of element equation, assembly of element equation, imposition of boundary condition and solution of assembly equation.

Findings

This study examined the impact of viscid dissipative radiation and the Dufour effect on unsteady one-dimensional MHD natural convective flow of a viscous, incompressible, electrically conducting fluid past an infinite moving vertical flat plate with a chemical reaction. Numerically solving the governing equations using the FEM approach is efficient and precise, aiming to be applied to fluid mechanics and related problems. Along with their effects on temperature, concentration and velocity, the following parameters are included: the mass Grashof number, the Soret number, the Grashof number, the Prandtl number, chemical reaction, the Schmidt number, radiation and the Casson parameter. Both the Grashof numbers of thermal and mass rates (Gr, Gm) make an increment in the velocity region. The velocity decreases with an increase in the magnetic parameter. The velocity increases with an increase in the permeability of the porous medium parameter. The temperature flow rate is higher for both Dufour and Viscid dissipation, while a decrement is noted of both Prandtl number and radiation effects. The decrementing behavior of the concentration region is observed at supreme inputs of chemical reaction coefficient and Schmidt number.

Originality/value

This is an original paper and not submitted anywhere.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 June 2024

Ahmed Zeeshan, Zaheer Asghar and Amad ur Rehaman

The present work is devoted to investigating the sensitivity analysis of the electroosmotic peristaltic motion of non-Newtonian Casson fluid with the effect of the chemical…

Abstract

Purpose

The present work is devoted to investigating the sensitivity analysis of the electroosmotic peristaltic motion of non-Newtonian Casson fluid with the effect of the chemical reaction and magnetohydrodynamics through the porous medium. The main focus is on flow efficiency quantities such as pressure rise per wavelength, frictional forces on the upper wall and frictional forces on the lower wall. This initiative is to bridge the existing gap in the available literature.

Design/methodology/approach

The governing equations of the problem are mathematically formulated and subsequently simplified for sensitivity analysis under the assumptions of a long wavelength and a small Reynolds number. The simplified equations take the form of coupled nonlinear differential equations, which are solved using the built-in Matlab routine bvp4c. The response surface methodology and artificial neural networks are used to develop the empirical model for pressure rise per wavelength, frictional forces on the upper wall and frictional forces on the lower wall.

Findings

The empirical model demonstrates an excellent fit with a coefficient of determination reaching 100% for responses, frictional forces on the upper wall and frictional forces on the lower wall and 99.99% for response, for pressure rise per wavelength. It is revealed through the sensitivity analysis that pressure rise per wavelength, frictional forces on the upper wall and frictional forces on the lower wall are most sensitive to the permeability parameter at all levels.

Originality/value

The objective of this study is to use artificial neural networks simulation and analyze the sensitivity of electroosmotic peristaltic motion of non-Newtonian fluid with the effect of chemical reaction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 February 2025

Sinan Maraş

This study aims to investigate the effects of layering sequence, aspect ratios, fiber orientation angles, loading types and boundary conditions on the buckling behavior of…

Abstract

Purpose

This study aims to investigate the effects of layering sequence, aspect ratios, fiber orientation angles, loading types and boundary conditions on the buckling behavior of glass/carbon/hybrid fiber-reinforced epoxy laminated composites using the differential quadrature (DQ) approach.

Design/methodology/approach

In total, different hybrid combinations are considered separately for angle-ply, cross-ply and antisymmetric layup schemes. For this purpose, a DQ code is developed using MATLAB.

Findings

The results obtained from the study reveal that the lamination arrangements and varying loading conditions of the hybrid laminated structures have a significant effect on the buckling performance of these materials.

Originality/value

This is the first study to investigate how the critical buckling loads of glass fiber/epoxy and carbon fiber/epoxy laminated hybrid composite plates are influenced by fiber orientation angles, aspect ratios, stacking sequences, loading conditions and boundary conditions using the DQ method. This study contributes to the literature in this regard.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 November 2024

Mohanaphriya US and Tanmoy Chakraborty

This research focuses on the controlling irreversibilities in a radiative, chemically reactive electromagnetohydrodynamics (EMHD) flow of a nanofluid toward a stagnation point…

Abstract

Purpose

This research focuses on the controlling irreversibilities in a radiative, chemically reactive electromagnetohydrodynamics (EMHD) flow of a nanofluid toward a stagnation point. Key considerations include the presence of Ohmic dissipation, linear thermal radiation, second-order chemical reaction with the multiple slips. With these factors, this study aims to provide insights for practical applications where thermal management and energy efficiency are paramount.

Design/methodology/approach

Lie group transformation is used to revert the leading partial differential equations into nonlinear ODE form. Hence, the solutions are attained analytically through differential transformation method-Padé and numerically using the Runge–Kutta–Fehlberg method with shooting procedure, to ensure the precise and reliable determination of the solution. This dual approach highlights the robustness and versatility of the methods.

Findings

The system’s entropy generation is enhanced by incrementing the magnetic field parameter (M), while the electric field (E) and velocity slip parameters (ξ) control its growth. Mass transportation irreversibility and the Bejan number (Be) are significantly increased by the chemical reaction rate (Cr). In addition, there is a boost in the rate of heat transportation by 3.66% while 0.05⩽ξ⩽0.2; meanwhile for 0.2⩽ξ⩽1.1, the rate of mass transportation gets enhanced by 12.87%.

Originality/value

This paper presents a novel approach to analyzing the entropy optimization in a radiative, chemically reactive EMHD nanofluid flow near a stagnation point. Moreover, this research represents a significant advancement in the application of analytical techniques, complemented by numerical approaches to study boundary layer equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

Performance Analysis of the Indian Pharmaceutical Industry: A Global Outlook
Type: Book
ISBN: 978-1-83797-743-7

Article
Publication date: 13 February 2025

Gladys Tharapatla, Glory Tharapatla and Jaladi Rajendra Kumar

This paper aims to explore the numerical simulation of MHD flow of Williamson hybrid nanofluid over a porous stretched sheet. Cattaneo–Christov thermal and specie fluxes were used…

Abstract

Purpose

This paper aims to explore the numerical simulation of MHD flow of Williamson hybrid nanofluid over a porous stretched sheet. Cattaneo–Christov thermal and specie fluxes were used in the model. Partial differential equations are exploit to model the underlying physics of the situation (PDEs).

Design/methodology/approach

Using an acceptable similarity functions, these equations were changed into total differential equations (ODEs). The spectral relaxation method (SRM) was used to solve the linked and nonlinear altered ODEs. The Gauss–Seidel procedure is used to figure out how to use Chebyshev pseudospectral techniques in SRM. This is an iterative process.

Findings

Increasing the heat relaxation flow increases temperature distributions; increasing the mass relaxation flux increases concentration distributions. A higher value of thermal radiation heat generation and Eckert number was noticed to improve temperature and velocity distributions. Due to the imposed electromagnetic force, a higher magnetic field is detected to cause an elevation in the velocity distribution. Also, a higher thermal radiation is observed to upsurge the velocity in company with temperature distributions.

Originality/value

This research benefits from biomedical engineering, biological sciences, astrophysics and geophysics. The rheological applications of Williamson fluid finds usefulness in biological sciences. The nanoparticles as considered in this study finds applications in the field of biomedical engineering. Also, the application of the imposed electromagnetic field and magnetic field strength is very useful in the area of astrophysics. A good agreement may be found in the literature on this study’s findings.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 986