Xinyu Lin and Weihua Liu
To ensure the safety of aircraft fuel tanks, the FAA issued an airworthiness clause (25.981(b)) suggesting that the risk of combustion and explosion be reduced by installing a…
Abstract
Purpose
To ensure the safety of aircraft fuel tanks, the FAA issued an airworthiness clause (25.981(b)) suggesting that the risk of combustion and explosion be reduced by installing a Flammability Reduction Means or an Ignition Mitigation Means. The airflow distribution method has a significant effect on the inerting performance. Therefore, this study aims to determine an optimum airflow distribution method of the inerting system.
Design/methodology/approach
This paper establishes the calculation model of the oxygen concentration in the ullage of a multi-bay fuel tank, calculates the oxygen concentration in the ullage of an aircraft tank in single-flow and dual-flow modes under series and parallel ventilation methods and analyses the inerting performance of the tank under different airflow distribution methods.
Findings
The results show that: (1) the bleed flow rate required to achieve whole process inerting of multi-bay fuel tank in dual-flow mode is lower than that in single-flow mode; (2) under the parallel ventilation method, the decrease of oxygen concentration and the uniformity of each bay are better than that in the series ventilation method; (3) dual-flow mode staged ventilation method can be used to achieve the whole process inerting of the tanks under the minimum engine bleed consumption.
Originality/value
The novelty of this paper is to analyze and optimize the airflow distribution method of the inerting system under the whole flight envelope to minimize the engine bleed consumption.
Details
Keywords
Hang Jia, Zhiming Gao, Shixiong Wu, Jia Liang Liu and Wenbin Hu
This study aims to investigate the corrosion inhibitor effect of migrating corrosion inhibitor (MCI) on Q235 steel in high alkaline environment under cathodic polarization.
Abstract
Purpose
This study aims to investigate the corrosion inhibitor effect of migrating corrosion inhibitor (MCI) on Q235 steel in high alkaline environment under cathodic polarization.
Design/methodology/approach
This study investigated the electrochemical characteristics of Q235 steel with and without MCI by polarization curve and electrochemical impedance spectroscopy. Besides, the surface composition of Q235 steel under different environments was analyzed by X-ray photoelectron spectroscopy. In addition, the migration characteristic of MCI and the adsorption behavior of MCI under cathodic polarization were studied using Raman spectroscopy.
Findings
Diethanolamine (DEA) and N, N-dimethylethanolamine (DMEA) can inhibit the increase of Fe(II) in the oxide film of Q235 steel under cathodic polarization. The adsorption stability of DMEA film was higher under cathodic polarization potential, showing a higher corrosion inhibition ability. The corrosion inhibition mechanism of DEA and DMEA under cathodic polarization potential was proposed.
Originality/value
The MCI has a broad application prospect in the repair of damaged reinforced concrete due to its unique migratory characteristics. The interaction between MCIs, rebar and concrete with different compositions has been studied, but the passivation behavior of the steel interface in the presence of both the migrating electric field and corrosion inhibitors has been neglected. And it was investigated in this paper.
Details
Keywords
Yuefei Ji, Long Hao, Jianqiu Wang and Wei Ke
The purpose of this paper is to introduce cyclic electrochemical impedance spectroscopy (EIS) method to understand the corrosion evolution behavior of structural materials in…
Abstract
Purpose
The purpose of this paper is to introduce cyclic electrochemical impedance spectroscopy (EIS) method to understand the corrosion evolution behavior of structural materials in secondary circuit water environments of pressurized water reactor (PWR) system.
Design/methodology/approach
The cyclic EIS has been used to understand the corrosion evolution of 304 stainless steel (SS) in simulated secondary circuit water environment. Scanning electron microscopy and X-ray photoelectron spectroscopy have been used to characterize the microstructure and corrosion morphology of 304 SS sample.
Findings
Cyclic EIS measurement is applicable in gaining information on the corrosion evolution of 304 SS in high-temperature and high-pressure (HTHP) water environments. Based on analyses of the cyclic EIS data, it is considered that the measured EIS response of 304 SS sample under HTHP water environment mainly comes from the compact inner part of the newly formed oxide layer, which gradually inhibits the progress of electrochemical reactions at the oxide layer/substrate interface.
Originality/value
The cyclic EIS has been introduced into HTHP water environment, and its reliability has been evaluated. It may find a wide application in corrosion studies of materials under HTHP water environments, which is critical for a safe operation in nuclear power plants and beneficial for the development of corrosion-resistant materials in PWR system.
Details
Keywords
Salim Ahmed, Khushboo Kumari and Durgeshwer Singh
Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous…
Abstract
Purpose
Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous pollutant. Soil contaminated with petroleum hydrocarbons adversely affects the properties of soil. This paper aim to remove pollutants from the environment is an urgent need of the hour to maintain the proper functioning of soil ecosystems.
Design/methodology/approach
The ability of micro-organisms to degrade petroleum hydrocarbons makes it possible to use these microorganisms to clean the environment from petroleum pollution. For preparing this review, research papers and review articles related to petroleum hydrocarbons degradation by micro-organisms were collected from journals and various search engines.
Findings
Various physical and chemical methods are used for remediation of petroleum hydrocarbons contaminants. However, these methods have several disadvantages. This paper will discuss a novel understanding of petroleum hydrocarbons degradation and how micro-organisms help in petroleum-contaminated soil restoration. Bioremediation is recognized as the most environment-friendly technique for remediation. The research studies demonstrated that bacterial consortium have high biodegradation rate of petroleum hydrocarbons ranging from 83% to 89%.
Social implications
Proper management of petroleum hydrocarbons pollutants from the environment is necessary because of their toxicity effects on human and environmental health.
Originality/value
This paper discussed novel mechanisms adopted by bacteria for biodegradation of petroleum hydrocarbons, aerobic and anaerobic biodegradation pathways, genes and enzymes involved in petroleum hydrocarbons biodegradation.
Details
Keywords
Aicha Gasmi, Marc Heran, Noureddine Elboughdiri, Lioua Kolsi, Djamel Ghernaout, Ahmed Hannachi and Alain Grasmick
The main purpose of this study resides essentially in the development of a new tool to quantify the biomass in the bioreactor operating under steady state conditions.
Abstract
Purpose
The main purpose of this study resides essentially in the development of a new tool to quantify the biomass in the bioreactor operating under steady state conditions.
Design/methodology/approach
Modeling is the most relevant tool for understanding the functioning of some complex processes such as biological wastewater treatment. A steady state model equation of activated sludge model 1 (ASM1) was developed, especially for autotrophic biomass (XBA) and for oxygen uptake rate (OUR). Furthermore, a respirometric measurement, under steady state and endogenous conditions, was used as a new tool for quantifying the viable biomass concentration in the bioreactor.
Findings
The developed steady state equations simplified the sensitivity analysis and allowed the autotrophic biomass (XBA) quantification. Indeed, the XBA concentration was approximately 212 mg COD/L and 454 mgCOD/L for SRT, equal to 20 and 40 d, respectively. Under the steady state condition, monitoring of endogenous OUR permitted biomass quantification in the bioreactor. Comparing XBA obtained by the steady state equation and respirometric tool indicated a percentage deviation of about 3 to 13%. Modeling bioreactor using GPS-X showed an excellent agreement between simulation and experimental measurements concerning the XBA evolution.
Originality/value
These results confirmed the importance of respirometric measurements as a simple and available tool for quantifying biomass.
Details
Keywords
Sagar H. Mane, Tushar S. Wagh, Gotan H. Jain and Madhavrao K. Deore
The study aims to develop an inexpensive metal oxide semiconductor gas sensor with high sensitivity, excellent selectivity for a specific gas and rapid response time.
Abstract
Purpose
The study aims to develop an inexpensive metal oxide semiconductor gas sensor with high sensitivity, excellent selectivity for a specific gas and rapid response time.
Design/methodology/approach
This study synthesized Zn2SnO4 nanostructures using a hydrothermal method with a 1 M concentration of zinc chloride (ZnCl2) as the zinc source and a 0.7 M concentration of tin chloride (SnCl4) as the tin source. Thick films of nanostructured Zn2SnO4 were then produced using screen printing. The structural properties of Zn2SnO4 were confirmed using X-ray diffraction, and the formation of Zn2SnO4 nanoparticles was verified by transmission electron microscopy. Scanning electron microscopy was used to analyse the surface morphology of the fabricated material, while energy dispersive spectroscopy provided insight into the chemical composition of the thick film. These fabricated thick films underwent testing for various hazardous gases, including nitrogen dioxide, ammonia, hydrogen sulphide (H2S), ethanol and methanol.
Findings
The nanostructured Zn2SnO4 thick film sensor demonstrates a notable sensitivity to H2S gas at a concentration of 500 ppm when operated at 160°C. Its selectivity, response time and recovery time were assessed and documented.
Research limitations/implications
The primary limitations of this research on metal oxide semiconductor gas sensors include poor selectivity to specific gases, limited durability and challenges in achieving detection at room temperature.
Practical implications
The nanostructured Zn2SnO4 thick film sensor demonstrates a strong response to H2S gas, making it a promising candidate for commercial production. The detection of H2S is crucial in various sectors, including industries and sewage plants, where monitoring this gas is essential.
Social implications
Currently, heightened global apprehension about atmospheric pollution stems from the existence of perilous toxic and flammable gases. This underscores the imperative need for monitoring such gases. Toxic and flammable gases are frequently encountered in both residential and industrial environments, posing substantial hazards to human health. Noteworthy accidents involving flammable gases have occurred in recent years. It is crucial to comprehend the presence and composition of these gases in the surroundings for precise detection, measurement and control. Thus, there has been a significant push for extensive research and development in diverse sensor technologies using various materials and methodologies to monitor and regulate these gases effectively.
Originality/value
In this research, Zn2SnO4 nanostructures were synthesized using a hydrothermal method with ZnCl2 at a concentration of 1 M for zinc and SnCl4 at a concentration of 0.7 M for tin. Thick films of nanostructured Zn2SnO4 were then fabricated via screen printing technique. Following fabrication, all thick films were subjected to testing with various toxic gases, and the results were compared to previously published data. The analysis indicated that the nanostructured Zn2SnO4 thick film sensor demonstrated outstanding performance concerning gas response, gas concentration, selectivity and response time, particularly towards H2S gas.
Details
Keywords
Sajad Pirsa and Fahime Purghorbani
In this study, an attempt has been made to collect the research that has been done on the construction and design of the H2O2 sensor. So far, many efforts have been made to…
Abstract
Purpose
In this study, an attempt has been made to collect the research that has been done on the construction and design of the H2O2 sensor. So far, many efforts have been made to quickly and sensitively determine H2O2 concentration based on different analytical principles. In this study, the importance of H2O2, its applications in various industries, especially the food industry, and the importance of measuring it with different techniques, especially portable sensors and on-site analysis, have been investigated and studied.
Design/methodology/approach
Hydrogen peroxide (H2O2) is a very simple molecule in nature, but due to its strong oxidizing and reducing properties, it has been widely used in the pharmaceutical, medical, environmental, mining, textile, paper, food production and chemical industries. Sensitive, rapid and continuous detection of H2O2 is of great importance in many systems for product quality control, health care, medical diagnostics, food safety and environmental protection.
Findings
Various methods have been developed and applied for the analysis of H2O2, such as fluorescence, colorimetry and electrochemistry, among them, the electrochemical technique due to its advantages in simple instrumentation, easy miniaturization, sensitivity and selectivity.
Originality/value
Monitoring the H2O2 concentration level is of practical importance for academic and industrial purposes. Edible oils are prone to oxidation during processing and storage, which may adversely affect oil quality and human health. Determination of peroxide value (PV) of edible oils is essential because PV is one of the most common quality parameters for monitoring lipid oxidation and oil quality control. The development of cheap, simple, fast, sensitive and selective H2O2 sensors is essential.
Details
Keywords
Paras Khullar, Gurmeet Singh and Satish Kumar
The paper aims to investigate the effects of slurry erosion on hydro turbine components, focusing on the experimental analysis of SS-304 using sand as the erodent material. The…
Abstract
Purpose
The paper aims to investigate the effects of slurry erosion on hydro turbine components, focusing on the experimental analysis of SS-304 using sand as the erodent material. The study was conducted on a tester under varying parameters to assess the material’s erosion behavior. In this work, the experimental investigation of SS-304 with sand was done with sand as the erodent material on a tester with various parameters. Further, the materials were made more resistant to wear by a WC-10Co-4Cr coating, done by the high-velocity oxygen fuel method. The mass loss of the specimens with and without coating was calculated. SEM was carried out on the specimens. The specimens with coating showed greater erosion resistance than the base material; however, wear mechanisms such as craters, lip formation, pores, etc. were discovered on the specimens.
Design/methodology/approach
The wear tests were carried out on the specimens with parameters of rotating speeds of 1,000, 1,150, 1,300 and 1,450 rpm; time duration 80, 130 and 180 min with sand concentrations of 30% and 50% in water. The base material was coated with WC-10Co-4Cr by the HVOF method of thermal spray.
Findings
In the results, it was observed that the wear resistance of the coated specimen increased significantly as compared to the uncoated material. Concentration proved to be the major factor influencing the wear erosion followed by rotational speed and time period. Various surface defects such as ploughing, crater formation, lip formation and micro-cutting were also found.
Originality/value
Slurry concentration was found to be the more dominant factor in increasing the wear of the specimens. The tests proved that the coating proved to be highly wear-resistant as compared to the uncoated base material and increased the wear resistance up to 3 times.
Details
Keywords
Dinesh R., Stanly Jones Retnam, Dev Anand M. and Edwin Raja Dhas J.
The demand for energy is increasing massively due to urbanization and industrialization. Due to the massive usage of diesel engines in the transportation sector, global warming is…
Abstract
Purpose
The demand for energy is increasing massively due to urbanization and industrialization. Due to the massive usage of diesel engines in the transportation sector, global warming is increasing rapidly. The purpose of this paper is to use hydrogen as the potential alternative for diesel engine.
Design/methodology/approach
A series of tests conducted in the twin cylinder four stroke diesel engine at various engine speeds. In addition to the hydrogen, the ultrasonication is applied to add the nanoparticles to the neat diesel. The role of nanoparticles on engine performance is effective owing to its physicochemical properties. Here, neat diesel mixed 30% of biodiesel along with the hydrogen at the concentration of 10%, 20% and 30% and 50 ppm of graphite oxide to form the blends DNH10, DNH20 and DNH30.
Findings
Inclusion of both hydrogen and nanoparticles increases the brake power and brake thermal efficiency (BTE) of the engine with relatively less fuel consumption. Compared to all blends, the maximum BTE of 33.3% has been reported by 30% hydrogen-based fuel. On the contrary, the production of the pollutants also reduces as the hydrogen concentration increases.
Originality/value
Majority of the pollutants such as carbon monoxide, carbon dioxide and hydrocarbon were dropped massively compared to diesel. On the contrary, there is no reduction in nitrogen of oxides (NOx). Highest production of NOx was witnessed for 30% hydrogen fuel due to the premixed combustion phase and cylinder temperatures.
Details
Keywords
Yinghong Li, Wei Tan, Wenjie Pei and Guorui Zhu
The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam…
Abstract
Purpose
The purpose of this paper is to investigate the effect of NaCl solution with different concentrations on impact-sliding fretting corrosion behavior of Inconel 690TT steam generator heat transfer tubes.
Design/methodology/approach
The optical 3D profiler was used to measure the wear profile and calculated the wear volume. Corrosion behavior was studied using open circuit potential monitoring and potentiodynamic polarization testing. The morphologies and elemental distributions of wear scars were analyzed using scanning electron microscopy and energy-dispersive spectroscopy. The synergism of wear and corrosion was analyzed according to the ASTM G119 standard.
Findings
The corrosion tendency reflected by OCP and the corrosion current calculated by Tafel both increased with the increase of NaCl concentration. The total volume loss of the material increased with concentration, and it was known from the synergism that the volume loss caused by corrosion-enhanced wear accounted for the largest proportion, while the wear-enhanced corrosion also made a greater contribution to volume loss than tangential fretting corrosion. Through the analysis of the material morphologies and synergism of wear and corrosion, the damage mechanism was elucidated.
Originality/value
The research findings can provide reference for impact-sliding fretting corrosion behavior of Inconel 690TT heat transfer tubes in NaCl solution with different concentrations.