Search results
1 – 4 of 4Swapnil Narayan Rajmane and Shaligram Tiwari
This study aims to perform three-dimensional numerical computations for blood flow through a double stenosed carotid artery. Pulsatile flow with Womersley number (Wo) of 4.65 and…
Abstract
Purpose
This study aims to perform three-dimensional numerical computations for blood flow through a double stenosed carotid artery. Pulsatile flow with Womersley number (Wo) of 4.65 and Reynolds number (Re) of 425, based on the diameter of normal artery and average velocity of inlet pulse, was considered.
Design/methodology/approach
Finite volume method based ANSYS Fluent 20.1 was used for solving the governing equations of three-dimensional, laminar, incompressible and non-Newtonian blood flow. A high-quality grid with sufficient refinement was generated using ICEM CFD 20.1. The time-averaged flow field was captured to investigate the effect of severity and eccentricity on the lumen flow characteristics.
Findings
The results show that an increase in interspacing between blockages brings shear layer instability within the region between two blockages. The velocity profile and wall shear stress distribution are found to be majorly influenced by eccentricity. On the other hand, their peak magnitude is found to be primarily influenced by severity. Results have also demonstrated that the presence of eccentricity in stenosis would assist in flow development.
Originality/value
Variation in severity and interspacing was considered with a provision of eccentricity equal to 10% of diameter. Eccentricity refers to the offset between the centreline of stenosis and the centreline of normal artery. For the two blockages, severity values of 40% and 60% based on diameter reduction were permuted, giving rise to four combinations. For each combination, three values of interspacing in the multiples of normal artery diameter (D), viz. 4D, 6D and 8D were considered.
Details
Keywords
Sultan Mohammed Althahban, Mostafa Nowier, Islam El-Sagheer, Amr Abd-Elhady, Hossam Sallam and Ramy Reda
This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the…
Abstract
Purpose
This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the number of layers of patches, whether a single or double patch is used and how well debonding the area under the patch improves the strength of the cracked aluminum plates with different crack lengths.
Design/methodology/approach
Single-edge cracked aluminum specimens of 150 mm in length and 50 mm in width were tested using the tensile test. The cracked aluminum specimens were then repaired using GFRP patches with various configurations. A three-dimensional (3D) finite element method (FEM) was adopted to simulate the repaired cracked aluminum plates using composite patches to obtain the stress intensity factor (SIF). The numerical modeling and validation of ABAQUS software and the contour integral method for SIF calculations provide a valuable tool for further investigation and design optimization.
Findings
The width of the GFRP patches affected the efficiency of the rehabilitated cracked aluminum plate. Increasing patch width WP from 5 mm to 15 mm increases the peak load by 9.7 and 17.5%, respectively, if compared with the specimen without the patch. The efficiency of the GFRP patch in reducing the SIF increased as the number of layers increased, i.e. the maximum load was enhanced by 5%.
Originality/value
This study assessed repairing metallic structures using the chopped strand mat GFRP. Furthermore, it demonstrated the superiority of rectangular patches over semicircular ones, along with the benefit of using double patches for out-of-plane bending prevention and it emphasizes the detrimental effect of defects in the bonding area between the patch and the cracked component. This underlines the importance of proper surface preparation and bonding techniques for successful repair.
Graphical abstract
Details
Keywords
Kumarasubramanian Ramar and Ganesan Subbiah
This study aims to examine the environmental effects of plastic waste on the atmosphere and its implications for disaster waste management. It focuses on using ammonia, pyrolyzed…
Abstract
Purpose
This study aims to examine the environmental effects of plastic waste on the atmosphere and its implications for disaster waste management. It focuses on using ammonia, pyrolyzed plastic oil and the effectiveness of alumina nanoparticles as a catalyst.
Design/methodology/approach
The research explores different combinations of conventional diesel and nano Al2O3 derived from pyrolyzed plastic oil (ranging from P10 to P40). Critical performance metrics evaluated include brake mean effective pressure (BMEP), brake specific fuel consumption, brake thermal efficiency and emissions of CO2, CO and NOx. The study specifically investigates the impact of adding 50 ppm of Al2O3 nanoparticles to these blends.
Findings
The findings indicate that using blended fuels with nanoadditives significantly lowers pollution. Specifically, the P30 blend with 50 ppm of Al2O3 nanoparticles greatly reduced CO emissions. Additionally, the same blend reduced NOx emissions and CO2 emissions. The P30 mix showed improved BMEP and brake thermal efficiency due to its density, calorific value and viscosity (6.3 bar). The P30 blend exhibited higher thermal efficiency due to decreased heat loss, whereas conventional diesel demonstrated the best mechanical efficiency due to its longer ignition delay.
Originality/value
This study highlights the potential of using Al2O3 nanoparticles and pyrolyzed plastic oil to reduce emissions and enhance the performance of internal combustion engines. It underscores the environmental benefits and implications for disaster waste management by converting plastic waste into useful resources and reducing air pollution.
Details
Keywords
As climate change disproportionately affects vulnerable populations, ensuring thermal comfort for older adults is magnified in tropical senior living environments. This study…
Abstract
Purpose
As climate change disproportionately affects vulnerable populations, ensuring thermal comfort for older adults is magnified in tropical senior living environments. This study explores the lived experiences of older adults' thermal comfort in senior living facilities in a tropical climate and how these experiences impact their overall well-being.
Design/methodology/approach
Employing Moustakas' transcendental phenomenology and the Modified Stevick-Colaizzi-Keen method, this study investigated older adults' thermal experiences through semi-structured interviews with 28 participants in six urban senior living facilities in Malaysia.
Findings
Four primary themes emerged: fabric and function; atmospheric conditions and living dynamics; thermal dynamics and environmental comfort; temperature tensions of stress, sound, and sensitivity. Our findings underscore the importance of considering the multisensory and multi-faceted nature of thermal comfort for older adults, considering sensory aspects, early life experiences, cultural practices, and personal preferences, particularly in tropical climates.
Originality/value
As one of the first to explore the thermal comfort of older adults in senior-friendly accommodations in a tropical climate, the findings provide a comprehensive understanding of older adults' diverse thermal comfort needs and offer practical recommendations for environments that support healthy aging. By integrating insights from hospitality, gerontology, and environmental studies, this research contributes to the promotion of public health and aligns with global objectives to improve the well-being of the aging population.
Details