Search results

1 – 4 of 4
Article
Publication date: 26 September 2024

Hayet Soltani, Jamila Taleb, Fatma Ben Hamadou and Mouna Boujelbène-Abbes

This study investigates clean energy, commodities, green bonds and environmental, social and governance (ESG) index prices forecasting and assesses the predictive performance of…

Abstract

Purpose

This study investigates clean energy, commodities, green bonds and environmental, social and governance (ESG) index prices forecasting and assesses the predictive performance of various factors on these asset prices, used for the development of a robust forecasting support decision model using machine learning (ML) techniques. More specifically, we explore the impact of the financial stress on forecasting price.

Design/methodology/approach

We utilize feature selection techniques to evaluate the predictive efficacy of various factors on asset prices. Moreover, we have developed a forecasting model for these asset prices by assessing the accuracy of two ML models: specifically, the deep learning long short-term memory (LSTM) neural networks and the extreme gradient boosting (XGBoost) model. To check the robustness of the study results, the authors referred to bootstrap linear regression as an alternative traditional method for forecasting green asset prices.

Findings

The results highlight the significance of financial stress in enhancing price forecast accuracy, with the financial stress index (FSI) and panic index (PI) emerging as primary determinants. In terms of the forecasting model's accuracy, our analysis reveals that the LSTM outperformed the XGBoost model, establishing itself as the most efficient algorithm among the two tested.

Practical implications

This research enhances comprehension, which is valuable for both investors and policymakers seeking improved price forecasting through the utilization of a predictive model.

Originality/value

To the authors' best knowledge, this marks the inaugural attempt to construct a multivariate forecasting model. Indeed, the development of a robust forecasting model utilizing ML techniques provides practical value as a decision support tool for shaping investment strategies.

Details

EuroMed Journal of Business, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1450-2194

Keywords

Article
Publication date: 22 July 2022

Yousra Trichilli, Sahbi Gaadane, Mouna Boujelbène Abbes and Afif Masmoudi

In this paper, the authors investigate the impact of the confirmation bias on returns, expectations and hedging of optimistic and pessimistic traders in the cryptocurrencies…

Abstract

Purpose

In this paper, the authors investigate the impact of the confirmation bias on returns, expectations and hedging of optimistic and pessimistic traders in the cryptocurrencies, commodities and stock markets before and during COVID-19 periods.

Design/methodology/approach

The authors investigate the impact of the confirmation bias on the estimated returns and the expectations of optimistic and pessimistic traders by employing the financial stochastic model with confirmation bias. Indeed, the authors compute the optimal portfolio weights, the optimal hedge ratios and the hedging effectiveness.

Findings

The authors find that without confirmation bias, during the two sub periods, the expectations of optimistic and pessimistic trader’s seem to convergence toward zero. However, when confirmation bias is particularly strong, the average distance between these two expectations are farer. The authors further show that, with and without confirmation bias, the optimal weights (the optimal hedge ratios) are found to be lower (higher) for all pairs of financial market during the COVID-19 period as compared to the pre-COVID-19 period. The authors also document that the stronger the confirmation bias is, the lower the optimal weight and the higher the optimal hedge ratio. Moreover, results reveal that the values of the optimal hedge ratio for optimistic and pessimistic traders affected or not by the confirmation bias are higher during the COVID-19 period compared to the estimates for the pre-COVID period and inversely for the optimal hedge ratios and the hedging effectiveness index. Indeed, either for optimists or pessimists, the presence of confirmation bias leads to higher optimal hedge ratio, higher optimal weights and higher hedging effectiveness index.

Practical implications

The findings of the study provided additional evidence for investors, portfolio managers and financial analysts to exploit confirmation bias to make an optimal portfolio allocation especially during COVID-19 and non-COVID-19 periods. Moreover, the findings of this study might be useful for investors as they help them to make successful investment decision in potential hedging strategies.

Originality/value

First, this is the first scientific work that conducts a stochastic analysis about the impact of emotional biases on the estimated returns and the expectations of optimists and pessimists in cryptocurrency and commodity markets. Second, the originality of this study stems from the fact that the authors make a comparative analysis of hedging behavior across different markets and different periods with and without the impact of confirmation bias. Third, this paper pays attention to the impact of confirmation bias on the expectations and hedging behavior in cryptocurrencies and commodities markets in extremely stressful periods such as the recent COVID-19 pandemic.

Details

EuroMed Journal of Business, vol. 19 no. 2
Type: Research Article
ISSN: 1450-2194

Keywords

Article
Publication date: 19 March 2024

Yousra Trichilli, Hana Kharrat and Mouna Boujelbène Abbes

This paper assesses the co-movement between Pax gold and six fiat currencies. It also investigates the optimal time-varying hedge ratios in order to examine the properties of Pax…

61

Abstract

Purpose

This paper assesses the co-movement between Pax gold and six fiat currencies. It also investigates the optimal time-varying hedge ratios in order to examine the properties of Pax gold as a diversifier and hedge asset.

Design/methodology/approach

This paper examines the volatility spillover between Pax gold and fiat currencies using the framework of wavelet analysis, BEKK-GARCH models and Range DCC-GARCH. Moreover, this paper proposes to use the covariance and variance structure obtained from the new range DCC-GARCH framework to estimate the time-varying optimal hedge ratios, the optimal weighs and the hedging effectiveness.

Findings

Wavelet coherence method reveals that, at low frequency, large zone of co-movements appears for the pairs Pax gold/EUR, Pax gold/JPY and Pax gold/RUB. Further, the BEKK results show unidirectional (bidirectional) transmission effects between Pax gold and EUR, GBP, JPY and CNY (INR, RUB) fiat currencies. Moreover, the Range DCC results show that the Pax gold and the fiat currency returns are weakly correlated with low coefficients close to zero. Thus, Pax gold seems to serve as a safe haven asset against the systematic risk of fiat currency markets. In addition, the results of optimal weights show that rational investor should invest more in Pax gold and less in fiat currencies. Concerning the hedge ratios results, the findings reveal that the INR (JPY) fiat currency appears to be the most expensive (cheapest) hedge for the Pax-gold market. However, the JPY’s fiat currency appears to be the cheapest one. As for hedging effectiveness results, the authors found that hedging strategies including fiat currencies–Pax gold pairs are most likely to sharply decrease the portfolio’s risk.

Practical implications

A comprehensive understanding of the relationship between Pax Gold and fiat currencies is crucial for refining portfolio strategies involving cryptocurrencies. This research underscores the significance of grasping volatility transmissions between these currencies, providing valuable insights to guide investors in their decision-making processes. Moreover, it encourages further exploration into the interdependencies of digital currencies. Additionally, this study sheds light on effective contagion risk management, particularly during crises such as Covid-19 and the Russia–Ukraine conflict. It underscores the role of Pax Gold as a safe-haven asset and offers practical guidance for adjusting portfolios across various economic conditions. Ultimately, this research advances our comprehension of Pax Gold’s risk-return profile, positioning it as a potential hedge during periods of uncertainty, thereby contributing to the evolving literature on cryptocurrencies.

Originality/value

This study’s primary value lies in its pioneering empirical examination of the time-varying correlations and scale dependence between Pax Gold and fiat currencies. It goes beyond by determining optimal time-varying hedge ratios through the innovative Range-DCC-GARCH model, originally introduced by Molnár (2016) and distinguished by its incorporation of both low and high prices. Significantly, this analysis unfolds within the unique context of the Covid-19 pandemic and the Russian–Ukrainian conflict, marking a novel contribution to the field.

Details

EuroMed Journal of Business, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1450-2194

Keywords

Article
Publication date: 5 September 2023

Taicir Mezghani, Mouna Boujelbène and Souha Boutouria

This paper investigates the predictive impact of Financial Stress on hedging between the oil market and the GCC stock and bond markets from January 1, 2007, to December 31, 2020…

Abstract

Purpose

This paper investigates the predictive impact of Financial Stress on hedging between the oil market and the GCC stock and bond markets from January 1, 2007, to December 31, 2020. The authors also compare the hedging performance of in-sample and out-of-sample analyses.

Design/methodology/approach

For the modeling purpose, the authors combine the GARCH-BEKK model with the machine learning approach to predict the transmission of shocks between the financial markets and the oil market. The authors also examine the hedging performance in order to obtain well-diversified portfolios under both Financial Stress cases, using a One-Dimensional Convolutional Neural Network (1D-CNN) model.

Findings

According to the results, the in-sample analysis shows that investors can use oil to hedge stock markets under positive Financial Stress. In addition, the authors prove that oil hedging is ineffective in reducing market risks for bond markets. The out-of-sample results demonstrate the ability of hedging effectiveness to minimize portfolio risk during the recent pandemic in both Financial Stress cases. Interestingly, hedgers will have a more efficient hedging performance in the stock and oil market in the case of positive (negative) Financial Stress. The findings seem to be confirmed by the Diebold-Mariano test, suggesting that including the negative (positive) Financial Stress in the hedging strategy displays better out-of-sample performance than the in-sample model.

Originality/value

This study improves the understanding of the whole sample and positive (negative) Financial Stress estimates and forecasts of hedge effectiveness for both the out-of-sample and in-sample estimates. A portfolio strategy based on transmission shock prediction provides diversification benefits.

Details

Managerial Finance, vol. 50 no. 3
Type: Research Article
ISSN: 0307-4358

Keywords

1 – 4 of 4