Search results

1 – 3 of 3
Article
Publication date: 26 April 2024

Mawloud Titah and Mohammed Abdelghani Bouchaala

This paper aims to establish an efficient maintenance management system tailored for healthcare facilities, recognizing the crucial role of medical equipment in providing timely…

Abstract

Purpose

This paper aims to establish an efficient maintenance management system tailored for healthcare facilities, recognizing the crucial role of medical equipment in providing timely and precise patient care.

Design/methodology/approach

The system is designed to function both as an information portal and a decision-support system. A knowledge-based approach is adopted centered on Semantic Web Technologies (SWTs), leveraging a customized ontology model for healthcare facilities’ knowledge capitalization. Semantic Web Rule Language (SWRL) is integrated to address decision-support aspects, including equipment criticality assessment, maintenance strategies selection and contracting policies assignment. Additionally, Semantic Query-enhanced Web Rule Language (SQWRL) is incorporated to streamline the retrieval of decision-support outcomes and other useful information from the system’s knowledge base. A real-life case study conducted at the University Hospital Center of Oran (Algeria) illustrates the applicability and effectiveness of the proposed approach.

Findings

Case study results reveal that 40% of processed equipment is highly critical, 40% is of medium criticality, and 20% is of negligible criticality. The system demonstrates significant efficacy in determining optimal maintenance strategies and contracting policies for the equipment, leveraging combined knowledge and data-driven inference. Overall, SWTs showcases substantial potential in addressing maintenance management challenges within healthcare facilities.

Originality/value

An innovative model for healthcare equipment maintenance management is introduced, incorporating ontology, SWRL and SQWRL, and providing efficient data integration, coordinated workflows and data-driven context-aware decisions, while maintaining optimal flexibility and cross-departmental interoperability, which gives it substantial potential for further development.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 2 July 2024

Reshma Dnyandev Vartak Koli and Avinash Sharma

This study aims to compare traffic sign (TS) and obstacle detection for autonomous vehicles using different methods. The review will be performed based on the various methods, and…

Abstract

Purpose

This study aims to compare traffic sign (TS) and obstacle detection for autonomous vehicles using different methods. The review will be performed based on the various methods, and the analysis will be done based on the metrics and datasets.

Design/methodology/approach

In this study, different papers were analyzed about the issues of obstacle detection (OD) and sign detection. This survey reviewed the information from different journals, along with their advantages and disadvantages and challenges. The review lays the groundwork for future researchers to gain a deeper understanding of autonomous vehicles and is obliged to accurately identify various TS.

Findings

The review of different approaches based on deep learning (DL), machine learning (ML) and other hybrid models that are utilized in the modern era. Datasets in the review are described clearly, and cited references are detailed in the tabulation. For dataset and model analysis, the information search process utilized datasets, performance measures and achievements based on reviewed papers in this survey.

Originality/value

Various techniques, search procedures, used databases and achievement metrics are surveyed and characterized below for traffic signal detection and obstacle avoidance.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 17 July 2023

Xinyue Hao and Emrah Demir

Decision-making, reinforced by artificial intelligence (AI), is predicted to become potent tool within the domain of supply chain management. Considering the importance of this…

1292

Abstract

Purpose

Decision-making, reinforced by artificial intelligence (AI), is predicted to become potent tool within the domain of supply chain management. Considering the importance of this subject, the purpose of this study is to explore the triggers and technological inhibitors affecting the adoption of AI. This study also aims to identify three-dimensional triggers, notably those linked to environmental, social, and governance (ESG), as well as technological inhibitors.

Design/methodology/approach

Drawing upon a six-step systematic review following the preferred reporting items for systematic reviews and meta analysis (PRISMA) guidelines, a broad range of journal publications was recognized, with a thematic analysis under the lens of the ESG framework, offering a unique perspective on factors triggering and inhibiting AI adoption in the supply chain.

Findings

In the environmental dimension, triggers include product waste reduction and greenhouse gas emissions reduction, highlighting the potential of AI in promoting sustainability and environmental responsibility. In the social dimension, triggers encompass product security and quality, as well as social well-being, indicating how AI can contribute to ensuring safe and high-quality products and enhancing societal welfare. In the governance dimension, triggers involve agile and lean practices, cost reduction, sustainable supplier selection, circular economy initiatives, supply chain risk management, knowledge sharing and the synergy between supply and demand. The inhibitors in the technological category present challenges, encompassing the lack of regulations and rules, data security and privacy concerns, responsible and ethical AI considerations, performance and ethical assessment difficulties, poor data quality, group bias and the need to achieve synergy between AI and human decision-makers.

Research limitations/implications

Despite the use of PRISMA guidelines to ensure a comprehensive search and screening process, it is possible that some relevant studies in other databases and industry reports may have been missed. In light of this, the selected studies may not have fully captured the diversity of triggers and technological inhibitors. The extraction of themes from the selected papers is subjective in nature and relies on the interpretation of researchers, which may introduce bias.

Originality/value

The research contributes to the field by conducting a comprehensive analysis of the diverse factors that trigger or inhibit AI adoption, providing valuable insights into their impact. By incorporating the ESG protocol, the study offers a holistic evaluation of the dimensions associated with AI adoption in the supply chain, presenting valuable implications for both industry professionals and researchers. The originality lies in its in-depth examination of the multifaceted aspects of AI adoption, making it a valuable resource for advancing knowledge in this area.

Details

Journal of Modelling in Management, vol. 19 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

Access

Year

Last 12 months (3)

Content type

1 – 3 of 3