Search results
1 – 2 of 2Yulius Shan Romario, Chinmai Bhat, Wan-Rong Jiang, I-Chiang Chou, Dao-Yuan Weng, Maziar Ramezani and Cho-Pei Jiang
This study aims to develop a low-cost additive-subtractive hybrid machine equipped with reverse scanning to fabricate high-precision dental surgical guides. The major focus of…
Abstract
Purpose
This study aims to develop a low-cost additive-subtractive hybrid machine equipped with reverse scanning to fabricate high-precision dental surgical guides. The major focus of developing the hybrid additive manufacturing technology is to achieve clinical precision of dental tools at an affordable price.
Design/methodology/approach
The designed machine consists of a self-developed vat-photopolymerization-based 3D printer that can fabricate dental surgical guides. The 3D printer is integrated with a self-developed 3D scanner that will analyze the fabricated part and evaluate the dimensional discrepancies. Based on the data provided by the scanner, the integrated secondary milling process will successfully machine the part to meet the clinical precision and standard.
Findings
The efficacy of the newly developed hybrid machine is demonstrated with the fabrication of complex part, lower and upper dental surgical guides with the mean dimensional deviations of 198.1, 136.6 and 117.9 µm, respectively. The integration of the secondary scanning and machining system successfully enhanced the mean dimensional deviation of upper and lower guides by 11.88% and 28.75%, respectively. Furthermore, this study also benchmarked the dimensional accuracies achieved by this low-cost technology with the high-end commercial 3D printers. The overall cost of the machine is evaluated to be $2,399.
Originality/value
This paper proposes a novel hybrid additive manufacturing process with integrated reverse scanning and machining modules to fabricate high-precision dental guides. The developed machine is a low-cost alternative to the existing high-end commercial counterparts. The developed machine has the potential to make endodontic treatments more affordable.
Details
Keywords
Cho-Pei Jiang, Masrurotin Masrurotin, Maziar Ramezani, Alvian Toto Wibisono, Ehsan Toyserkani and Wojciech Macek
Fused deposition modeling (FDM) nowadays offers promising future applications for fabricating not only thermoplastic-based polymers but also composite PLA/Metal alloy materials…
Abstract
Purpose
Fused deposition modeling (FDM) nowadays offers promising future applications for fabricating not only thermoplastic-based polymers but also composite PLA/Metal alloy materials, this capability bridges the need for metallic components in complex manufacturing processes. The research is to explore the manufacturability of multi-metal parts by printing green bodies of PLA/multi-metal objects, carrying these objects to the debinding process and varying the sintering parameters.
Design/methodology/approach
Three different sample types of SS316L part, Inconel 718 part and bimetallic composite of SS316L/IN718 were effectively printed. After the debinding process, the printed parts (green bodies), were isothermally sintered in non-vacuum chamber to investigate the fusion behavior at four different temperatures in the range of 1270 °C−1530 °C for 12 h and slowly cooled in the furnace. All samples was assessed including geometrical assessment to measure the shrinkage, characterization (XRD) to identify the crystallinity of the compound and microstructural evolution (Optical microscopy and SEM) to explore the porosity and morphology on the surface. The hardness of each sample types was measured and compared. The sintering parameter was optimized according to the microstructural evaluation on the interface of SS316L/IN718 composite.
Findings
The investigation indicated that the de-binding of all the samples was effectively succeeded through less weight until 16% when the PLA of green bodies was successfully evaporated. The morphology result shows evidence of an effective sintering process to have the grain boundaries in all samples, while multi-metal parts clearly displayed the interface. Furthermore, the result of XRD shows the tendency of lower crystallinity in SS316L parts, whilst IN718 has a high crystallinity. The optimal sintering temperature for SS316L/IN718 parts is 1500 °C. The hardness test concludes that the higher sintering temperature gives a higher hardness result.
Originality/value
This study highlights the successful sintering of a bimetallic stainless steel 316 L/Inconel 718 composite, fabricated via dual-nozzle fused deposition modeling, in a non-vacuum environment at 1500 °C. The resulting material displayed maximum hardness values of 872 HV for SS316L and 755.5 HV for IN718, with both materials exhibiting excellent fusion without any cracks.
Details