Search results
1 – 3 of 3Stewart Clegg, Michael Grothe-Hammer and Kathia Serrano Velarde
Thanh-Nghi Do and Minh-Thu Tran-Nguyen
This study aims to propose novel edge device-tailored federated learning algorithms of local classifiers (stochastic gradient descent, support vector machines), namely, FL-lSGD…
Abstract
Purpose
This study aims to propose novel edge device-tailored federated learning algorithms of local classifiers (stochastic gradient descent, support vector machines), namely, FL-lSGD and FL-lSVM. These algorithms are designed to address the challenge of large-scale ImageNet classification.
Design/methodology/approach
The authors’ FL-lSGD and FL-lSVM trains in a parallel and incremental manner to build an ensemble local classifier on Raspberry Pis without requiring data exchange. The algorithms load small data blocks of the local training subset stored on the Raspberry Pi sequentially to train the local classifiers. The data block is split into k partitions using the k-means algorithm, and models are trained in parallel on each data partition to enable local data classification.
Findings
Empirical test results on the ImageNet data set show that the authors’ FL-lSGD and FL-lSVM algorithms with 4 Raspberry Pis (Quad core Cortex-A72, ARM v8, 64-bit SoC @ 1.5GHz, 4GB RAM) are faster than the state-of-the-art LIBLINEAR algorithm run on a PC (Intel(R) Core i7-4790 CPU, 3.6 GHz, 4 cores, 32GB RAM).
Originality/value
Efficiently addressing the challenge of large-scale ImageNet classification, the authors’ novel federated learning algorithms of local classifiers have been tailored to work on the Raspberry Pi. These algorithms can handle 1,281,167 images and 1,000 classes effectively.
Details
Keywords
Tingting Tian, Hongjian Shi, Ruhui Ma and Yuan Liu
For privacy protection, federated learning based on data separation allows machine learning models to be trained on remote devices or in isolated data devices. However, due to the…
Abstract
Purpose
For privacy protection, federated learning based on data separation allows machine learning models to be trained on remote devices or in isolated data devices. However, due to the limited resources such as bandwidth and power of local devices, communication in federated learning can be much slower than in local computing. This study aims to improve communication efficiency by reducing the number of communication rounds and the size of information transmitted in each round.
Design/methodology/approach
This paper allows each user node to perform multiple local trainings, then upload the local model parameters to a central server. The central server updates the global model parameters by weighted averaging the parameter information. Based on this aggregation, user nodes first cluster the parameter information to be uploaded and then replace each value with the mean value of its cluster. Considering the asymmetry of the federated learning framework, adaptively select the optimal number of clusters required to compress the model information.
Findings
While maintaining the loss convergence rate similar to that of federated averaging, the test accuracy did not decrease significantly.
Originality/value
By compressing uplink traffic, the work can improve communication efficiency on dynamic networks with limited resources.
Details