Search results
1 – 10 of 27Yash G. Mittal, Yogesh Patil, Pushkar Prakash Kamble, Gopal Dnyanba Gote, Avinash Kumar Mehta and K.P. Karunakaran
Additive manufacturing (AM) is a layer-by-layer technique that helps to create physical objects from a three-dimensional data set. Fused deposition modeling is a widely used…
Abstract
Purpose
Additive manufacturing (AM) is a layer-by-layer technique that helps to create physical objects from a three-dimensional data set. Fused deposition modeling is a widely used material extrusion (MEX)-based AM technique that melts thermoplastic filaments and selectively deposits them over a build platform. Despite its simplicity and affordability, it suffers from various printing defects, with partial warping being a prevalent issue. Warpage is a physical deformation caused by thermal strain incompatibility that results in the bending of the printed part away from the build platform. This study aims to investigate the warpage characteristics of printed parts based on geometrical parameters and build orientations to reduce the warpage extent.
Design/methodology/approach
Cuboidal samples of thermoplastic acrylonitrile butadiene styrene ranging from 5 to 80 mm were printed using a commercial MEX system. A Taguchi method-based design of experiment trial was performed to optimize the placement and orientation of the part for minimal warpage.
Findings
It was found that a lower value of the “in-plane” aspect ratio and a more prominent part thickness are favorable for minimal warpage. The part should always be placed near the region with the highest temperature (least thermal gradient) to minimize the warpage.
Originality/value
A novel dimensionless parameter (Y) is proposed that should be set to a minimum value to achieve minimal warpage. The results of this study can help improve the design and part placement for the MEX technique, thus elevating the print quality.
Details
Keywords
Yogesh Patil, Ashik Kumar Patel, Gopal Dnyanba Gote, Yash G. Mittal, Avinash Kumar Mehta, Sahil Devendra Singh, K.P. Karunakaran and Milind Akarte
This study aims to improve the acceleration in the additive manufacturing (AM) process. AM tools, such as extrusion heads, jets, electric arcs, lasers and electron beams (EB)…
Abstract
Purpose
This study aims to improve the acceleration in the additive manufacturing (AM) process. AM tools, such as extrusion heads, jets, electric arcs, lasers and electron beams (EB), experience negligible forces. However, their speeds are limited by the positioning systems. In addition, a thin tool must travel several kilometers in tiny motions with several turns while realizing the AM part. Hence, acceleration is a more significant limiting factor than the velocity or precision for all except EB.
Design/methodology/approach
The sawtooth (ST) scanning strategy presented in this paper minimizes the time by combining three motion features: zigzag scan, 45º or 135º rotation for successive layers in G00 to avoid the CNC interpolation, and modifying these movements along 45º or 135º into sawtooth to halve the turns.
Findings
Sawtooth effectiveness is tested using an in-house developed Sand AM (SaAM) apparatus based on the laser–powder bed fusion AM technique. For a simple rectangle layer, the sawtooth achieved a path length reduction of 0.19%–1.49% and reduced the overall time by 3.508–4.889 times, proving that sawtooth uses increased acceleration more effectively than the other three scans. The complex layer study reduced calculated time by 69.80%–139.96% and manufacturing time by 47.35%–86.85%. Sawtooth samples also exhibited less dimensional variation (0.88%) than zigzag 45° (12.94%) along the build direction.
Research limitations/implications
Sawtooth is limited to flying optics AM process.
Originality/value
Development of scanning strategy for flying optics AM process to reduce the warpage by improving the acceleration.
Details
Keywords
Yogesh Patil, Milind Akarte, K. P. Karunakaran, Ashik Kumar Patel, Yash G. Mittal, Gopal Dnyanba Gote, Avinash Kumar Mehta, Ronald Ely and Jitendra Shinde
Integrating additive manufacturing (AM) tools in traditional mold-making provides complex yet affordable sand molds and cores. AM processes such as selective laser sintering (SLS…
Abstract
Purpose
Integrating additive manufacturing (AM) tools in traditional mold-making provides complex yet affordable sand molds and cores. AM processes such as selective laser sintering (SLS) and Binder jetting three-dimensional printing (BJ3DP) are widely used for patternless sand mold and core production. This study aims to perform an in-depth literature review to understand the current status, determine research gaps and propose future research directions. In addition, obtain valuable insights into authors, organizations, countries, keywords, documents, sources and cited references, sources and authors.
Design/methodology/approach
This study followed the systematic literature review (SLR) to gather relevant rapid sand casting (RSC) documents via Scopus, Web of Science and EBSCO databases. Furthermore, bibliometrics was performed via the Visualization of Similarities (VOSviewer) software.
Findings
An evaluation of 116 documents focused primarily on commercial AM setups and process optimization of the SLS. Process optimization studies the effects of AM processes, their input parameters, scanning approaches, sand types and the integration of computer-aided design in AM on the properties of sample. The authors performed detailed bibliometrics of 80 out of 120 documents via VOSviewer software.
Research limitations/implications
This review focuses primarily on the SLS AM process.
Originality/value
A SLR and bibliometrics using VOSviewer software for patternless sand mold and core production via the AM process.
Details
Keywords
Muhammad Ibnu Rashyid, Mahendra Jaya and Muhammad Akhsin Muflikhun
This paper aims to use hybrid manufacturing (HM) to overcome several drawbacks of material extrusion three-dimensional (3D) printers, such as low dimension ranging from 0.2 to…
Abstract
Purpose
This paper aims to use hybrid manufacturing (HM) to overcome several drawbacks of material extrusion three-dimensional (3D) printers, such as low dimension ranging from 0.2 to 0.5 µm, resulting in a noticeable staircase effect and elevated surface roughness.
Design/methodology/approach
Subtractive manufacturing (SM) through computer numerical control milling is renowned for its precision and superior surface finish. This study integrates additive manufacturing (AM) and SM into a single material extrusion 3D printer platform, creating a HM system. Two sets of specimens, one exclusively printed and the other subjected to both printing and milling, were assessed for dimension accuracy and surface roughness.
Findings
The outcomes were promising, with postmilling accuracy reaching 99.94%. Significant reductions in surface roughness were observed at 90° (93.4% decrease from 15.598 to 1.030 µm), 45° (89% decrease from 26.727 to 2.946 µm) and the face plane (71% decrease from 12.176 to 3.535 µm).
Practical implications
The 3D printer was custom-built based on material extrusion and modified with an additional milling tool on the same gantry. An economic evaluation based on cost-manufacturing demonstrated that constructing this dual-function 3D printer costs less than US$560 in materials, offering valuable insights for researchers looking to replicate a similar machine.
Originality/value
The modified general 3D printer platform offered an easy way to postprocessing without removing the workpiece from the bed. This mechanism can reduce the downtime of changing the machine. The proven increased dimension accuracy and reduced surface roughness value increase the value of 3D-printed specimens.
Details
Keywords
Xiaomin Xiao, Guang Fu, Pengpeng Song, Qingguo Peng, Naihui He, Taiqian Mo and Zhengwen Zhang
This paper aims to offer a comprehensive review and categorization of production optimization throughout the additive manufacturing lifecycle in a cloud environment. It aims to…
Abstract
Purpose
This paper aims to offer a comprehensive review and categorization of production optimization throughout the additive manufacturing lifecycle in a cloud environment. It aims to provide a structured approach to identifying and addressing issues.
Design/methodology/approach
This paper systematically reviews 75 technical papers on cloud manufacturing, nesting, scheduling and postprocessing in additive manufacturing. This includes a detailed discussion of the key issues.
Findings
This paper introduces a production framework for the entire lifecycle of additive manufacturing in a cloud environment. This framework aids in problem identification and decision-making based on the process flow. It provides an integrated view from cloud to postprocessing, examining decision interdependencies and enhancing problem identification and organization.
Originality/value
To the best of the authors’ knowledge, this paper is the first to review the complete lifecycle of additive manufacturing, emphasizing the often-overlooked aspects of postprocessing and cloud manufacturing. It offers a comprehensive study of lifecycle optimization challenges and suggests ways to streamline the production process.
Details
Keywords
Anand Mohan Pandey, Sajan Kapil and Manas Das
Selective jet electrodeposition (SJED) is an emerging additive manufacturing (AM) technology for realizing metallic components of nano and micro sizes. The deposited parts on the…
Abstract
Purpose
Selective jet electrodeposition (SJED) is an emerging additive manufacturing (AM) technology for realizing metallic components of nano and micro sizes. The deposited parts on the substrate form metallurgical bonding, so separating them from the substrate is an unsolved issue. Therefore, this paper aims to propose a method for separating the deposited micro parts from a sacrificial substrate. Furthermore, single and multi-bead optimization is performed to fabricate microparts with varying density.
Design/methodology/approach
A typical SJED process consists of a nozzle (to establish a column of electrolytes) retrofitted on a machine tool (to provide relative motion between substrate and nozzle) that deposits material atom-by-atom on a conductive substrate.
Findings
A comprehensive study of process parameters affecting the layer height, layer width and morphology of the deposited micro-parts has been provided. The uniformity in the deposited parts can be achieved with the help of low applied voltage and high scanning speed. Multi-bead analysis for the flat surface condition is experimentally performed, and the flat surface condition is achieved when the centre distance between two adjacent beads is kept at half of the width of a single bead.
Originality/value
Although several literatures have demonstrated that the SJED process can be used for the fabrication of parts; however, part fabrication through multi-bead optimization is limited. Moreover, the removal of the fabricated part from the substrate is the novelty of the current work.
Details
Keywords
Rafael Pereira Ferreira, Louriel Oliveira Vilarinho and Americo Scotti
This study aims to propose and evaluate the progress in the basic-pixel (a strategy to generate continuous trajectories that fill out the entire surface) algorithm towards…
Abstract
Purpose
This study aims to propose and evaluate the progress in the basic-pixel (a strategy to generate continuous trajectories that fill out the entire surface) algorithm towards performance gain. The objective is also to investigate the operational efficiency and effectiveness of an enhanced version compared with conventional strategies.
Design/methodology/approach
For the first objective, the proposed methodology is to apply the improvements proposed in the basic-pixel strategy, test it on three demonstrative parts and statistically evaluate the performance using the distance trajectory criterion. For the second objective, the enhanced-pixel strategy is compared with conventional strategies in terms of trajectory distance, build time and the number of arcs starts and stops (operational efficiency) and targeting the nominal geometry of a part (operational effectiveness).
Findings
The results showed that the improvements proposed to the basic-pixel strategy could generate continuous trajectories with shorter distances and comparable building times (operational efficiency). Regarding operational effectiveness, the parts built by the enhanced-pixel strategy presented lower dimensional deviation than the other strategies studied. Therefore, the enhanced-pixel strategy appears to be a good candidate for building more complex printable parts and delivering operational efficiency and effectiveness.
Originality/value
This paper presents an evolution of the basic-pixel strategy (a space-filling strategy) with the introduction of new elements in the algorithm and proves the improvement of the strategy’s performance with this. An interesting comparison is also presented in terms of operational efficiency and effectiveness between the enhanced-pixel strategy and conventional strategies.
Details
Keywords
Piotr Staszkiewicz, Jarosław Horobiowski, Anna Szelągowska and Agnieszka Maryla Strzelecka
The study aims to identify the practical borders of AI legal personality and accountability in human-centric services.
Abstract
Purpose
The study aims to identify the practical borders of AI legal personality and accountability in human-centric services.
Design/methodology/approach
Using a framework tailored for AI studies, this research analyses structured interview data collected from auditors based in Poland.
Findings
The study identified new constructs to complement the taxonomy of arguments for AI legal personality: cognitive strain, consciousness, cyborg paradox, reasoning replicability, relativism, AI misuse, excessive human effort and substitution.
Research limitations/implications
The insights presented herein are primarily derived from the perspectives of Polish auditors. There is a need for further exploration into the viewpoints of other key stakeholders, such as lawyers, judges and policymakers, across various global contexts.
Practical implications
The findings of this study hold significant potential to guide the formulation of regulatory frameworks tailored to AI applications in human-centric services. The proposed sui generis AI personality institution offers a dynamic and adaptable alternative to conventional legal personality models.
Social implications
The outcomes of this research contribute to the ongoing public discourse on AI’s societal impact. It encourages a balanced assessment of the potential advantages and challenges associated with granting legal personality to AI systems.
Originality/value
This paper advocates for establishing a sui generis AI personality institution alongside a joint accountability model. This dual framework addresses the current uncertainties surrounding human, general AI and super AI characteristics and facilitates the joint accountability of responsible AI entities and their ultimate beneficiaries.
Details
Keywords
Shrushti Maheshwari, Anand Kumar, Pyaarjeet Singh Chaurasia, T. Niranjan, Zafar Alam and Sarthak S. Singh
This study aims to investigate the compression characteristics of the 3D-printed polylactic acid (PLA) samples at temperatures below the glass transition temperature (Tg) with…
Abstract
Purpose
This study aims to investigate the compression characteristics of the 3D-printed polylactic acid (PLA) samples at temperatures below the glass transition temperature (Tg) with varying strain rates and develop a thermo-mechanical viscoplastic constitutive model to predict the finite strain compression response using a single set of material parameters. Also, the micro-mechanical damage processes are linked to the global stress–strain response at varied strain rates and temperatures through scanning electron microscopy (SEM).
Design/methodology/approach
Tg of PLA was determined using a dynamic mechanical analyzer. Compression experiments were conducted at strain rates of 2 × 10–3/s and 2 × 10–2/s at 25°C, 40°C and 50°C. The failure mechanisms were examined using SEM. A finite strain thermo-mechanical viscoplastic constitutive model was developed to analyze the deformations at the considered strain rates and temperatures.
Findings
Tg of PLA was determined as 55°C. While the yield and post-yield stresses drop with increasing temperature, their trend reverses with an increased strain rate. SEM imaging indicated plasticizing effects at higher temperatures, while filament fragmentation and twisting at higher strain rates were identified as the dominant failure mechanisms. Using a non-linear regression analysis to predict the experimental data, an overall R2 value of 0.98 was achieved between experimental and model prediction, implying the robustness of the model’s calibration.
Originality/value
In this study, a viscoplastic constitutive model was developed that considers the combined effect of temperature and strain rate for FDM-printed PLA experiencing extensive compression. Using appropriate temperature-dependent modulus and flow rate properties, a single set of model parameters predicted the rise in the gap between yield stress and degree of softening as strain rates and temperatures increased.
Details
Keywords
This study aims to investigate the impact of organizational mistreatments, such as workplace bullying and ostracism, on task performance. Additionally, it explores the mediating…
Abstract
Purpose
This study aims to investigate the impact of organizational mistreatments, such as workplace bullying and ostracism, on task performance. Additionally, it explores the mediating role of cyber loafing and the moderating role of negative reciprocity beliefs.
Design/methodology/approach
Adopting a positivism research philosophy and a deductive approach, this study focuses on the petroleum sector-related organizations where enterprise resource planning requires active Internet use, potentially leading to cyber loafing. Data were collected from employees using purposive sampling techniques, resulting in a sample size of 248. The data analysis was conducted using AMOS and SPSS software.
Findings
The results indicate that cyber loafing fully mediates the relationship between workplace bullying and ostracism on task performance. Additionally, negative reciprocity beliefs significantly moderate the relationship between workplace bullying, ostracism and cyber loafing.
Originality/value
This study presents a moderated-mediation model of organizational mistreatments and task performance, elucidating the mechanisms through the mediating role of cyber loafing and the moderating role of negative reciprocity beliefs.
Details