Search results
1 – 3 of 3Chunjie Wei, Qi Chen, Jimin Xu, Xiaojun Liu and Wei Wang
The purpose of this paper is to explore the operating characteristics of gallium-based liquid metals (GLMs) by directly adding them as lubricants in real mechanical equipment.
Abstract
Purpose
The purpose of this paper is to explore the operating characteristics of gallium-based liquid metals (GLMs) by directly adding them as lubricants in real mechanical equipment.
Design/methodology/approach
This paper conducts an analysis of the rotor-bearing system under GLM lubrication using a constructed test rig, focusing on vibration signals, surface characteristics of the friction pair, contact resistance and temperature rise features.
Findings
The study reveals that GLM can effectively improve the lubrication condition of the tribo-pair, leading to a more stable vibration signal in the system. Surface analysis demonstrates that GLM can protect the sample surface from wear, and phase separation occurs during the experimental process. Test results of contact resistance indicate that, in addition to enhancing the interfacial conductivity, GLM also generates a fluid dynamic pressure effect. The high thermal conductivity and anti-wear effects of GLM can reduce the temperature rise of the tribo-pair, but precautions should be taken to prevent oxidation and the loss of its fluidity.
Originality/value
The overall operating characteristics of the rotor-bearing system under GLM lubrication were investigated to provide new ideas for the lubrication of the rotor-bearing system.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0067/
Details
Keywords
Chengpeng Zhang, Zhihua Yu, Jimin Shi, Yu Li, Wenqiang Xu, Zheyi Guo, Hongshi Zhang, Zhongyuan Zhu and Sheng Qiang
Hexahedral meshing is one of the most important steps in performing an accurate simulation using the finite element analysis (FEA). However, the current hexahedral meshing method…
Abstract
Purpose
Hexahedral meshing is one of the most important steps in performing an accurate simulation using the finite element analysis (FEA). However, the current hexahedral meshing method in the industry is a nonautomatic and inefficient method, i.e. manually decomposing the model into suitable blocks and obtaining the hexahedral mesh from these blocks by mapping or sweeping algorithms. The purpose of this paper is to propose an almost automatic decomposition algorithm based on the 3D frame field and model features to replace the traditional time-consuming and laborious manual decomposition method.
Design/methodology/approach
The proposed algorithm is based on the 3D frame field and features, where features are used to construct feature-cutting surfaces and the 3D frame field is used to construct singular-cutting surfaces. The feature-cutting surfaces constructed from concave features first reduce the complexity of the model and decompose it into some coarse blocks. Then, an improved 3D frame field algorithm is performed on these coarse blocks to extract the singular structure and construct singular-cutting surfaces to further decompose the coarse blocks. In most modeling examples, the proposed algorithm uses both types of cutting surfaces to decompose models fully automatically. In a few examples with special requirements for hexahedral meshes, the algorithm requires manual input of some user-defined cutting surfaces and constructs different singular-cutting surfaces to ensure the effectiveness of the decomposition.
Findings
Benefiting from the feature decomposition and the 3D frame field algorithm, the output blocks of the proposed algorithm have no inner singular structure and are suitable for the mapping or sweeping algorithm. The introduction of internal constraints makes 3D frame field generation more robust in this paper, and it can automatically correct some invalid 3–5 singular structures. In a few examples with special requirements, the proposed algorithm successfully generates valid blocks even though the singular structure of the model is modified by user-defined cutting surfaces.
Originality/value
The proposed algorithm takes the advantage of feature decomposition and the 3D frame field to generate suitable blocks for a mapping or sweeping algorithm, which saves a lot of simulation time and requires less experience. The user-defined cutting surfaces enable the creation of special hexahedral meshes, which was difficult with previous algorithms. An improved 3D frame field generation method is proposed to correct some invalid singular structures and improve the robustness of the previous methods.
Details
Keywords
Yuan George Shan, Indrit Troshani, Jimin Wang and Lu Zhang
This study investigates the convergence-of-interest and entrenchment effects on the relationship between managerial ownership and financial distress using evidence from the…
Abstract
Purpose
This study investigates the convergence-of-interest and entrenchment effects on the relationship between managerial ownership and financial distress using evidence from the Chinese stock market. It also analyzes whether the relationship is mediated by research and development (R&D) investment.
Design/methodology/approach
Using a dataset consisting of 19,059 firm-year observations of Chinese listed companies in the Shanghai and Shenzhen Stock Exchanges between 2010 and 2020, this study employs both piecewise and curvilinear models.
Findings
The results indicate that managerial ownership has a negative association with firm financial distress in both the low (below 12%) and high (above 18%) convergence-of-interest regions of managerial ownership, suggesting that managerial ownership in this region may contribute to improve firm financial status. Meanwhile, managerial ownership has a positive association with firm financial distress in the entrenchment region (12–18%), implying that managerial ownership in the entrenchment region may contribute to impair firm financial status. Furthermore, the results show that R&D investment mediates the association between managerial ownership and financial distress.
Originality/value
This study is the first to provide evidence of a nonlinear relationship between managerial ownership and financial distress, and identify the entrenchment region in the Chinese setting.
Details