Search results
1 – 7 of 7Mingyu Gao, Jinghua Xu, Shuyou Zhang and Jianrong Tan
The layer section of laser additive manufacturing (AM) can be rasterized. Subsequently, the rasterized layer section can be converted into sparse matrix. However, large storage…
Abstract
Purpose
The layer section of laser additive manufacturing (AM) can be rasterized. Subsequently, the rasterized layer section can be converted into sparse matrix. However, large storage space is occupied due to the high manufacturing resolution. In order to reduce the storage space, the purpose of this research is to propose a lossless compression method to compress the sparse matrix.
Design/methodology/approach
A lossless compression method for additive manufacturing is proposed. According to manifold and irregularity feature of the object of laser AM, a lossless compression method called continuous rows compressed storage (CRCS) based on continuous rows is innovatively proposed. In particular, the better direction strategy of compression method is selected based on the side-projected area per layer.
Findings
Take human teeth as an example, compared with compressed sparse row (CSR), the CRCS has advantage up to 98.88% in storage space. Compared with block compressed sparse row (BCSR), the CRCS has advantage up to 60.04% in storage space.
Originality/value
The proposed CRCS could be employed to compress the sparse matrixes of rasterized layer sections of laser AM. Compared with common lossless compression method of sparse matrix, the compression ratio of CRCS is greater. CRCS is propitious to reduce the storage space usage, thereby improving transmission efficiency.
Details
Keywords
Guodong Sa, Zhengyang Jiang, Jiacheng Sun, Chan Qiu, Zhenyu Liu and Jianrong Tan
Real-time monitoring of the critical physical fields of core components in complex equipment is of great significance as it can predict potential failures, provide reasonable…
Abstract
Purpose
Real-time monitoring of the critical physical fields of core components in complex equipment is of great significance as it can predict potential failures, provide reasonable preventive maintenance strategies and thereby ensure the service performance of the equipment. This research aims to propose a hierarchical explicit–implicit combined sensing-based real-time monitoring method to achieve the sensing of critical physical field information of core components in complex equipment.
Design/methodology/approach
Sensor deployable and non-deployable areas are divided based on the dynamic and static constraints in actual service. An integrated method of measurement point layout and performance evaluation is used to optimize sensor placement, and an association mapping between information in non-deployable and deployable areas is established, achieving hierarchical explicit–implicit combined sensing of key sensor information for core components. Finally, the critical physical fields of core components are reconstructed and visualized.
Findings
The proposed method is applied to the spindle system of CNC machine tools, and the result shows that this method can effectively monitor the spindle system temperature field.
Originality/value
This research provides an effective method for monitoring the service performance of complex equipment, especially considering the dynamic and static constraints during the service process and detecting critical information in non-deployable areas.
Details
Keywords
Zhengxin Tu, Jinghua Xu, Shuyou Zhang and Jianrong Tan
A biomechanical design method of lightweight full contacted insole based on structural anisotropy bespoke (SAB) is proposed, which can better redistribute the stress distribution…
Abstract
Purpose
A biomechanical design method of lightweight full contacted insole based on structural anisotropy bespoke (SAB) is proposed, which can better redistribute the stress distribution of SAB designed personalized insole.
Design/methodology/approach
The reconstructed joint biomechanics are simulated using finite element analysis (FEA) to develop a lightweight full contact insole. Innovatively, the anisotropic properties of the triply periodic minimal surface (TPMS) structure, which contribute to reducing insole weight, are considered to optimize stress distribution. Additionally, porosity and manufacturing time are included as design objectives. To validate the lightweight insole design, FEA is employed to simulate the stress distribution of the ergonomic insole, which can be fabricated by additive manufacturing (AM) with TPU.
Findings
With a little 0.924% loss in porosity, the maximum stress of lightweight SAB designed insoles is extremely decreased by 19.2917%.
Originality/value
The biomechanical design of the lightweight full contact insole based on SAB can effectively redistribute stress, avoid stress concentration and improve the mechanical properties of the ergonomic individual insole.
Details
Keywords
Mingzhe Tao, Jinghua Xu, Shuyou Zhang and Jianrong Tan
This work aims to provide a rapid robust optimization design solution for parallel robots or mechanisms, thereby circumventing inefficiencies and wastage caused by empirical…
Abstract
Purpose
This work aims to provide a rapid robust optimization design solution for parallel robots or mechanisms, thereby circumventing inefficiencies and wastage caused by empirical design, as well as numerous physical verifications, which can be employed for creating high-quality prototypes of parallel robots in a variety of applications.
Design/methodology/approach
A novel subregional meta-heuristic iteration (SMI) method is proposed for the optimization of parallel robots. Multiple subregional optimization objectives are established and optimization is achieved through the utilisation of an enhanced meta-heuristic optimization algorithm, which roughly employs chaotic mapping in the initialization strategy to augment the diversity of the initial solution. The non-dominated sorting method is utilised for updating strategies, thereby achieving multi-objective optimization.
Findings
The actuator error under the same trajectory is visibly reduced after SMI, with a maximum reduction of 6.81% and an average reduction of 1.46%. Meanwhile, the response speed, maximum bearing capacity and stiffness of the mechanism are enhanced by 63.83, 43.98 and 97.51%, respectively. The optimized mechanism is more robust and the optimization process is efficient.
Originality/value
The proposed robustness multi-objective optimization via SMI is more effective in improving the performance and precision of the parallel mechanisms in various applications. Furthermore, it provides a solution for the rapid and high-quality optimization design of parallel robots.
Details
Keywords
Li Shaochen, Zhenyu Liu, Yu Huang, Daxin Liu, Guifang Duan and Jianrong Tan
Assembly action recognition plays an important role in assembly process monitoring and human-robot collaborative assembly. Previous works overlook the interaction relationship…
Abstract
Purpose
Assembly action recognition plays an important role in assembly process monitoring and human-robot collaborative assembly. Previous works overlook the interaction relationship between hands and operated objects and lack the modeling of subtle hand motions, which leads to a decline in accuracy for fine-grained action recognition. This paper aims to model the hand-object interactions and hand movements to realize high-accuracy assembly action recognition.
Design/methodology/approach
In this paper, a novel multi-stream hand-object interaction network (MHOINet) is proposed for assembly action recognition. To learn the hand-object interaction relationship in assembly sequence, an interaction modeling network (IMN) comprising both geometric and visual modeling is exploited in the interaction stream. The former captures the spatial location relation of hand and interacted parts/tools according to their detected bounding boxes, and the latter focuses on mining the visual context of hand and object at pixel level through a position attention model. To model the hand movements, a temporal enhancement module (TEM) with multiple convolution kernels is developed in the hand stream, which captures the temporal dependences of hand sequences in short and long ranges. Finally, assembly action prediction is accomplished by merging the outputs of different streams through a weighted score-level fusion. A robotic arm component assembly dataset is created to evaluate the effectiveness of the proposed method.
Findings
The method can achieve the recognition accuracy of 97.31% and 95.32% for coarse and fine assembly actions, which outperforms other comparative methods. Experiments on human-robot collaboration prove that our method can be applied to industrial production.
Originality/value
The author proposes a novel framework for assembly action recognition, which simultaneously leverages the features of hands, objects and hand-object interactions. The TEM enhances the representation of dynamics of hands and facilitates the recognition of assembly actions with various time spans. The IMN learns the semantic information from hand-object interactions, which is significant for distinguishing fine assembly actions.
Details
Keywords
Guodong Sa, Haodong Bai, Zhenyu Liu, Xiaojian Liu and Jianrong Tan
The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are…
Abstract
Purpose
The assembly simulation in tolerance analysis is one of the most important steps for the tolerance design of mechanical products. However, most assembly simulation methods are based on the rigid body assumption, and those assembly simulation methods considering deformation have a poor efficiency. This paper aims to propose a novel efficient and precise tolerance analysis method based on stable contact to improve the efficiency and reliability of assembly deformation simulation.
Design/methodology/approach
The proposed method comprehensively considers the initial rigid assembly state, the assembly deformation and the stability examination of assembly simulation to improve the reliability of tolerance analysis results. The assembly deformation of mating surfaces was first calculated based on the boundary element method with optimal initial assembly state, then the stability of assembly simulation results was assessed by the density-based spatial clustering of applications with noise algorithm to improve the reliability of tolerance analysis. Finally, combining the small displacement torsor theory, the tolerance scheme was statistically analyzed based on sufficient samples.
Findings
A case study of a guide rail model demonstrated the efficiency and effectiveness of the proposed method.
Research limitations/implications
The present study only considered the form error when generating the skin model shape, and the waviness and the roughness of the matching surface were not considered.
Originality/value
To the best of the authors’ knowledge, the proposed method is original in the assembly simulation considering stable contact, which can effectively ensure the reliability of the assembly simulation while taking into account the computational efficiency.
Details
Keywords
Christopher Igwe Idumah, Raphael Stone Odera and Emmanuel Obumneme Ezeani
Nanotechnology (NT) advancements in personal protective textiles (PPT) or personal protective equipment (PPE) have alleviated spread and transmission of this highly contagious…
Abstract
Purpose
Nanotechnology (NT) advancements in personal protective textiles (PPT) or personal protective equipment (PPE) have alleviated spread and transmission of this highly contagious viral disease, and enabled enhancement of PPE, thereby fortifying antiviral behavior.
Design/methodology/approach
Review of a series of state of the art research papers on the subject matter.
Findings
This paper expounds on novel nanotechnological advancements in polymeric textile composites, emerging applications and fight against COVID-19 pandemic.
Research limitations/implications
As a panacea to “public droplet prevention,” textiles have proven to be potentially effective as environmental droplet barriers (EDBs).
Practical implications
PPT in form of healthcare materials including surgical face masks (SFMs), gloves, goggles, respirators, gowns, uniforms, scrub-suits and other apparels play critical role in hindering the spreading of COVID-19 and other “oral-respiratory droplet contamination” both within and outside hospitals.
Social implications
When used as double-layers, textiles display effectiveness as SFMs or surgical-fabrics, which reduces droplet transmission to <10 cm, within circumference of ∼0.3%.
Originality/value
NT advancements in textiles through nanoparticles, and sensor integration within textile materials have enhanced versatile sensory capabilities, robotics, flame retardancy, self-cleaning, electrical conductivity, flexibility and comfort, thereby availing it for health, medical, sporting, advanced engineering, pharmaceuticals, aerospace, military, automobile, food and agricultural applications, and more. Therefore, this paper expounds on recently emerging trends in nanotechnological influence in textiles for engineering and fight against COVID-19 pandemic.
Details