Search results
1 – 3 of 3Jialing Liu, Fangwei Zhu and Jiang Wei
This study aims to explore the different effects of inter-community group networks and intra-community group networks on group innovation.
Abstract
Purpose
This study aims to explore the different effects of inter-community group networks and intra-community group networks on group innovation.
Design/methodology/approach
The authors used a pooled panel dataset of 12,111 self-organizing innovation groups in 463 game product creative workshop communities from Steam support to test the hypothesis. The pooled ordinary least squares (OLS) model is used for analyzing the data.
Findings
The results show that network constraint is negatively associated with the innovation performance of online groups. The average path length of the inter-community group network negatively moderates the relationship between network constraint and group innovation, while the average path length of the intra-community group network positively moderates the relationship between network constraint and group innovation. In addition, both the network density of inter-community group networks and intra-community group networks can negatively moderate the negative relationship between network constraint and group innovation.
Originality/value
The findings of this study suggest that network structural characteristics of inter-community networks and intra-community networks have different effects on online groups’ product innovation, and therefore, group members should consider their inter- and intra-community connections when choosing other groups to form a collaborative innovation relationship.
Details
Keywords
Ke Zhang and Ailing Huang
The purpose of this paper is to provide a guiding framework for studying the travel patterns of PT users. The combination of public transit (PT) users’ travel data and user…
Abstract
Purpose
The purpose of this paper is to provide a guiding framework for studying the travel patterns of PT users. The combination of public transit (PT) users’ travel data and user profiling (UP) technology to draw a portrait of PT users can effectively understand users’ travel patterns, which is important to help optimize the scheduling of PT operations and planning of the network.
Design/methodology/approach
To achieve the purpose, the paper presents a three-level classification method to construct the labeling framework. A station area attribute mining method based on the term frequency-inverse document frequency weighting algorithm is proposed to determine the point of interest attributes of user travel stations, and the spatial correlation patterns of user travel stations are calculated by Moran’s Index. User travel feature labels are extracted from travel data containing Beijing PT data for one consecutive week.
Findings
In this paper, a universal PT user labeling system is obtained and some related methods are conducted including four categories of user-preferred travel area patterns mining and a station area attribute mining method. In the application of the Beijing case, a precise exploration of the spatiotemporal characteristics of PT users is conducted, resulting in the final Beijing PTUP system.
Originality/value
This paper combines UP technology with big data analysis techniques to study the travel patterns of PT users. A user profile label framework is constructed, and data visualization, statistical analysis and K-means clustering are applied to extract specific labels instructed by this system framework. Through these analytical processes, the user labeling system is improved, and its applicability is validated through the analysis of a Beijing PT case.
Details
Keywords
Hossein Sohrabi and Esmatullah Noorzai
The present study aims to develop a risk-supported case-based reasoning (RS-CBR) approach for water-related projects by incorporating various uncertainties and risks in the…
Abstract
Purpose
The present study aims to develop a risk-supported case-based reasoning (RS-CBR) approach for water-related projects by incorporating various uncertainties and risks in the revision step.
Design/methodology/approach
The cases were extracted by studying 68 water-related projects. This research employs earned value management (EVM) factors to consider time and cost features and economic, natural, technical, and project risks to account for uncertainties and supervised learning models to estimate cost overrun. Time-series algorithms were also used to predict construction cost indexes (CCI) and model improvements in future forecasts. Outliers were deleted by the pre-processing process. Next, datasets were split into testing and training sets, and algorithms were implemented. The accuracy of different models was measured with the mean absolute percentage error (MAPE) and the normalized root mean square error (NRSME) criteria.
Findings
The findings show an improvement in the accuracy of predictions using datasets that consider uncertainties, and ensemble algorithms such as Random Forest and AdaBoost had higher accuracy. Also, among the single algorithms, the support vector regressor (SVR) with the sigmoid kernel outperformed the others.
Originality/value
This research is the first attempt to develop a case-based reasoning model based on various risks and uncertainties. The developed model has provided an approving overlap with machine learning models to predict cost overruns. The model has been implemented in collected water-related projects and results have been reported.
Details