Search results
1 – 5 of 5Feng Yao, Qinling Lu, Yiguo Sun and Junsen Zhang
The authors propose to estimate a varying coefficient panel data model with different smoothing variables and fixed effects using a two-step approach. The pilot step estimates the…
Abstract
The authors propose to estimate a varying coefficient panel data model with different smoothing variables and fixed effects using a two-step approach. The pilot step estimates the varying coefficients by a series method. We then use the pilot estimates to perform a one-step backfitting through local linear kernel smoothing, which is shown to be oracle efficient in the sense of being asymptotically equivalent to the estimate knowing the other components of the varying coefficients. In both steps, the authors remove the fixed effects through properly constructed weights. The authors obtain the asymptotic properties of both the pilot and efficient estimators. The Monte Carlo simulations show that the proposed estimator performs well. The authors illustrate their applicability by estimating a varying coefficient production frontier using a panel data, without assuming distributions of the efficiency and error terms.
Details
Keywords
Ziwen Gao, Steven F. Lehrer, Tian Xie and Xinyu Zhang
Motivated by empirical features that characterize cryptocurrency volatility data, the authors develop a forecasting strategy that can account for both model uncertainty and…
Abstract
Motivated by empirical features that characterize cryptocurrency volatility data, the authors develop a forecasting strategy that can account for both model uncertainty and heteroskedasticity of unknown form. The theoretical investigation establishes the asymptotic optimality of the proposed heteroskedastic model averaging heterogeneous autoregressive (H-MAHAR) estimator under mild conditions. The authors additionally examine the convergence rate of the estimated weights of the proposed H-MAHAR estimator. This analysis sheds new light on the asymptotic properties of the least squares model averaging estimator under alternative complicated data generating processes (DGPs). To examine the performance of the H-MAHAR estimator, the authors conduct an out-of-sample forecasting application involving 22 different cryptocurrency assets. The results emphasize the importance of accounting for both model uncertainty and heteroskedasticity in practice.
Details
Keywords
The author develops a bilateral Nash bargaining model under value uncertainty and private/asymmetric information, combining ideas from axiomatic and strategic bargaining theory…
Abstract
The author develops a bilateral Nash bargaining model under value uncertainty and private/asymmetric information, combining ideas from axiomatic and strategic bargaining theory. The solution to the model leads organically to a two-tier stochastic frontier (2TSF) setup with intra-error dependence. The author presents two different statistical specifications to estimate the model, one that accounts for regressor endogeneity using copulas, the other able to identify separately the bargaining power from the private information effects at the individual level. An empirical application using a matched employer–employee data set (MEEDS) from Zambia and a second using another one from Ghana showcase the applied potential of the approach.
Details
Keywords
Luis Orea, Inmaculada Álvarez-Ayuso and Luis Servén
This chapter provides an empirical assessment of the effects of infrastructure provision on structural change and aggregate productivity using industrylevel data for a set of…
Abstract
This chapter provides an empirical assessment of the effects of infrastructure provision on structural change and aggregate productivity using industrylevel data for a set of developed and developing countries over 1995–2010. A distinctive feature of the empirical strategy followed is that it allows the measurement of the resource reallocation directly attributable to infrastructure provision. To achieve this, a two-level top-down decomposition of aggregate productivity that combines and extends several strands of the literature is proposed. The empirical application reveals significant production losses attributable to misallocation of inputs across firms, especially among African countries. Also, the results show that infrastructure provision has stimulated aggregate total factor productivity growth through both within and between industry productivity gains.
Details
Keywords
Zhichao Wang and Valentin Zelenyuk
Estimation of (in)efficiency became a popular practice that witnessed applications in virtually any sector of the economy over the last few decades. Many different models were…
Abstract
Estimation of (in)efficiency became a popular practice that witnessed applications in virtually any sector of the economy over the last few decades. Many different models were deployed for such endeavors, with Stochastic Frontier Analysis (SFA) models dominating the econometric literature. Among the most popular variants of SFA are Aigner, Lovell, and Schmidt (1977), which launched the literature, and Kumbhakar, Ghosh, and McGuckin (1991), which pioneered the branch taking account of the (in)efficiency term via the so-called environmental variables or determinants of inefficiency. Focusing on these two prominent approaches in SFA, the goal of this chapter is to try to understand the production inefficiency of public hospitals in Queensland. While doing so, a recognized yet often overlooked phenomenon emerges where possible dramatic differences (and consequently very different policy implications) can be derived from different models, even within one paradigm of SFA models. This emphasizes the importance of exploring many alternative models, and scrutinizing their assumptions, before drawing policy implications, especially when such implications may substantially affect people’s lives, as is the case in the hospital sector.
Details