Search results
1 – 10 of 17Haitao Liu, Junfu Zhou, Guangxi Li, Juliang Xiao and Xucang Zheng
This paper aims to present a new trajectory scheduling method to generate a smooth and continuous trajectory for a hybrid machining robot.
Abstract
Purpose
This paper aims to present a new trajectory scheduling method to generate a smooth and continuous trajectory for a hybrid machining robot.
Design/methodology/approach
The trajectory scheduling method includes two steps. First, a G3 continuity local smoothing approach is proposed to smooth the toolpath. Then, considering the tool/joint motion and geometric error constraints, a jerk-continuous feedrate scheduling method is proposed to generate the trajectory.
Findings
The simulations and experiments are conducted on the hybrid robot TriMule-800. The simulation results demonstrate that this method is effectively applicable to machining trajectory scheduling for various parts and is computationally friendly. Moreover, it improves the robot machining speed and ensures smooth operation under constraints. The results of the S-shaped part machining experiment show that the resulting surface profile error is below 0.12 mm specified in the ISO standard, confirming that the proposed method can ensure the machining accuracy of the hybrid robot.
Originality/value
This paper implements an analytical local toolpath smoothing approach to address the non-high-order continuity problem of the toolpath expressed in G code. Meanwhile, the feedrate scheduling method addresses the segmented paths after local smoothing, achieving smooth and continuous trajectory generation to balance machining accuracy and machining efficiency.
Details
Keywords
Yali Han, Shunyu Liu, Jiachen Chang, Han Sun, Shenyan Li, Haitao Gao and Zhuangzhuang Jin
This paper aims to propose a novel system design and control algorithm of lower limb exoskeleton, which provides walking assistance and load sharing for the wearer.
Abstract
Purpose
This paper aims to propose a novel system design and control algorithm of lower limb exoskeleton, which provides walking assistance and load sharing for the wearer.
Design/methodology/approach
In this paper, the valve-controlled asymmetrical hydraulic cylinder is selected for driving the hip and knee joint of exoskeleton. Pressure shoe is developed that purpose on detecting changes in plantar force, and a fuzzy recognition algorithm using plantar pressure is proposed. Dynamic model of the exoskeleton is established, and the sliding mode control is developed to implement the position tracking of exoskeleton. A series of prototype experiments including benchtop test, full assistance, partial assistance and loaded walking experiments are set up to verify the tracking performance and power-assisted effect of the proposed exoskeleton.
Findings
The control performance of PID control and sliding mode control are compared. The experimental data shows the tracking trajectories and tracking errors of sliding mode control and demonstrate its good robustness to nonlinearities. sEMG of the gastrocnemius muscle tends to be significantly weakened during assisted walking.
Originality/value
In this paper, a structure that the knee joint and hip joint driven by the valve-controlled asymmetrical cylinder is used to provide walking assistance for the wearer. The sliding mode control is proposed to deal with the nonlinearities during joint rotation and fluids. It shows great robustness and frequency adaptability through experiments under different motion frequencies and assistance modes. The design and control method of exoskeleton is a good attempt, which takes positive impacts on the productivity or quality of the life of wearers.
Details
Keywords
Soumita Ghosh, Abhishek Chakraborty and Alok Raj
This study aims to examine how fairness concerns and power structure in dyadic green supply chains impact retail price, supply chain profits and greening level decisions.
Abstract
Purpose
This study aims to examine how fairness concerns and power structure in dyadic green supply chains impact retail price, supply chain profits and greening level decisions.
Design/methodology/approach
This study develops game-theoretic models considering fairness concerns and asymmetric power structures under an iso-elastic demand setting. The research paper employs the Stackelberg game approach, taking into consideration the fairness concern of the channel leader.
Findings
The findings indicate that under fairness, there is an increase in both wholesale and retail prices, as well as greening expenditures. Notably, when comparing the two models (manufacturer Stackelberg and retailer Stackelberg), double marginalization is more pronounced in the retailer Stackelberg setup than in the manufacturer Stackelberg setup. In a traditional supply chain with iso-elastic demand, the follower typically extracts higher profit compared to the leader; however, our results show that, under fairness conditions, the leader achieves higher profit than the follower. Additionally, our study suggests that supply chain coordination is unattainable in a fairness setup. This paper provides insights for managers on the optimal supply chain structure and the level of fairness to maximize profit.
Originality/value
This paper investigates the impact of a leader's fairness on the optimal decisions within a green supply chain, an area that has received limited attention previously. Additionally, the study investigates how fairness concerns manifest in distinct power dynamics, specifically, in the contexts of manufacturer Stackelberg and retailer Stackelberg.
Details
Keywords
Kwadwo Asante, Petr Novak and Michael Adu Kwarteng
Environmental sustainability orientation has emerged to drive firms into eco-friendly production. Yet, the consequence of this new strategic thinking on firms’ green innovations…
Abstract
Environmental sustainability orientation has emerged to drive firms into eco-friendly production. Yet, the consequence of this new strategic thinking on firms’ green innovations, especially small- and medium-scale enterprises (SMEs), remains unresolved. Recognizing that the connection between environmental sustainability orientation and green innovation may not always be direct, the study theorizes that dynamic capability and entrepreneurial orientation may form part of the boundary conditions that strengthen its effect on small enterprises’ green innovation. The study adjoins the dynamic capability theory with the entrepreneurial orientation theory to test this relationship among small businesses within a developing economy. Results from the partial least squares–structural equation modeling (PLS-SEM) suggest that environmental sustainability orientation will result in green innovation when the SME’s dynamic capability can develop a creative reconfiguration of knowledge and new distinctive resources to support this new strategic direction. Similarly, findings from the study suggest that environmental sustainability orientation will translate into better green innovation outcomes when the SME entrepreneurial orientation has a solid attraction to protect the ecosystem and does not perceive green innovation as a risky enterprise.
Details
Keywords
Meng Min, Jiang Xian, Gao Tenglong and Ping Yufei
Torque is one of the main loads acting on the aircraft wing, the horizontal tail and the vertical tail. In flight load measurement, due to the significant influence of the bending…
Abstract
Purpose
Torque is one of the main loads acting on the aircraft wing, the horizontal tail and the vertical tail. In flight load measurement, due to the significant influence of the bending moment and the shear force on the strain gauge, the accuracy of torque measurement is usually low. Therefore, aircraft torque measurement is difficult. Based on the characteristics of a certain type of horizontal tail, a measurement method for the torque with high accuracy was proposed in this paper.
Design/methodology/approach
A new simplified torque measurement method for the all-moving horizontal tail was proposed based on the spiral driver. The feasibility of the method and key points of the tests were analyzed and studied through a virtual load calibration test.
Findings
Based on the results of the real load calibration test, the torque load equation with high accuracy was established, and the torque measurement was achieved in load flight tests.
Research limitations/implications
However, the proposed method is based on the structure of the spiral driver. If there is generally no spiral driver at the aircraft wings and vertical tails, then the appropriate torque measurement method needs to be derived according to the specific object.
Originality/value
The research in this paper provides a new idea for the torque measurement of aircraft structures, which can be used for the torque measurement of subsequent aircraft types.
Details
Keywords
Jiaqi Liu, Haitao Wen, Rong Wen, Wenjue Zhang, Yun Cui and Heng Wang
To contribute to achieving the Sustainable Development Goals, this study aims to explore how to encourage innovative green behaviors among college students and the mechanisms…
Abstract
Purpose
To contribute to achieving the Sustainable Development Goals, this study aims to explore how to encourage innovative green behaviors among college students and the mechanisms behind the formation of green innovation behavior. Specifically, this study examines the influences of schools, mentors and college students themselves.
Design/methodology/approach
A multilevel, multisource study involving 261 students from 51 groups generally supported this study’s predictions.
Findings
Proenvironmental and responsible mentors significantly predicted innovative green behavior among college students. In addition, creative motivation mediated the logical chain among green intellectual capital, emotional intelligence and green innovation behavior.
Practical implications
The study findings offer new insights into the conditions required for college students to engage in green innovation. In addition, they provide practical implications for cultivating green innovation among college students.
Originality/value
The authors proposed and tested a multilevel theory based on the ability–motivation–opportunity framework. In this model, proenvironmental and responsible mentors, green intellectual capital and emotional intelligence triggered innovative green behavior among college students through creative motivation.
Details
Keywords
Shuang Huang, Haitao Zhang and Tengjiang Yu
This study aims to investigate the micro mechanism of macro rheological characteristics for composite modified asphalt.Grey relational analysis (GRA) was used to analyze the…
Abstract
Purpose
This study aims to investigate the micro mechanism of macro rheological characteristics for composite modified asphalt.Grey relational analysis (GRA) was used to analyze the correlation between macro rheological indexes and micro infrared spectroscopy indexes.
Design/methodology/approach
First, a dynamic shear rheometer and a bending beam rheometer were used to obtain the evaluation indexes of high- and low-temperature rheological characteristics for asphalt (virgin, SBS/styrene butadiene rubber [SBR], SBS/rubber and SBR/rubber) respectively, and its variation rules were analyzed. Subsequently, the infrared spectroscopy test was used to obtain the micro rheological characteristics of asphalt, which were qualitatively and quantitatively analyzed, and its variation rules were analyzed. Finally, with the help of GRA, the macro-micro evaluation indexes were correlated, and the improvement efficiency of composite modifiers on asphalt was explored from rheological characteristics.
Findings
It was found that the deformation resistance and aging resistance of SBS/rubber composite modified asphalt are relatively good, and the modification effect of composite modifier and virgin asphalt is realized through physical combination, and the rheological characteristics change with the accumulation of functional groups. The correlation between macro rutting factor and micro functional group index is high, and the relationship between macro Burgers model parameters and micro functional group index is also close.
Originality/value
Results reveal the basic principle of inherent-improved synergistic effect for composite modifiers on asphalt and provide a theoretical basis for improving the composite modified asphalt.
Details
Keywords
Zaihua Luo, Juliang Xiao, Sijiang Liu, Mingli Wang, Wei Zhao and Haitao Liu
This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too…
Abstract
Purpose
This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too many identification parameters, complex model, difficult convergence of optimization algorithms and easy-to-fall into a locally optimal solution, and improve the efficiency and accuracy of dynamic parameter identification.
Design/methodology/approach
First, the dynamic parameter identification model of the 5-DOF hybrid robot was established based on the principle of virtual work. Then, the sensitivity of the parameters to be identified is analyzed by Sobol’s sensitivity method and verified by simulation. Finally, an identification strategy based on sensitivity analysis was designed, experiments were carried out on the real robot and the results were verified.
Findings
Compared with the traditional full-parameter identification method, the dynamic parameter identification method based on sensitivity analysis proposed in this paper converges faster when optimized using the genetic algorithm, and the identified dynamic model has higher prediction accuracy for joint drive forces and torques than the full-parameter identification models.
Originality/value
This work analyzes the sensitivity of the parameters to be identified in the dynamic parameter identification model for the first time. Then a parameter identification method is proposed based on the results of the sensitivity analysis, which can effectively reduce the parameters to be identified, simplify the identification model, accelerate the convergence of the optimization algorithm and improve the prediction accuracy of the identified model for the joint driving forces and torques.
Details
Keywords
Ying-Jie Guan and Yong-Ping Li
To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately…
Abstract
Purpose
To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately, this paper aims to propose a four-axis eight-rotor rescue unmanned aerial vehicle (UAV) which can carry a radar life detector. As the design of propeller is the key to the design of UAV, this paper mainly designs the propeller of the UAV at the present stage.
Design/methodology/approach
Based on the actual working conditions of UAVs, this paper preliminarily estimated the load of UAVs and the diameters of propellers and designed the main parameters of propellers according to the leaf element theory and momentum theory. Based on the low Reynolds number airfoil, this paper selected the airfoil with high lift drag ratio from the commonly used low Reynolds number airfoils. The chord length and twist angle of propeller blades were calculated according to the Wilson method and the maximum wind energy utilization coefficient and were optimized by the Asymptotic exponential function. The aerodynamic characteristics of the designed single propeller and coaxial propeller under different installation pitch angles and different installation distances were analyzed.
Findings
The results showed that the design of coaxial twin propellers can increase the load capacity by about 1.5 times without increasing the propeller diameter. When the installation distance between the two propellers was 8 cm and the tilt angle was 15° counterclockwise, the aerodynamic characteristics of the coaxial propeller were optimal.
Originality/value
The novelty of this work came from the conceptual design of the new rescue UAV and its numerical optimization using the Wilson method combined with the maximum wind energy utilization factor and the exponential function. The aerodynamic characteristics of the common shaft propeller were analyzed under different mounting angles and different mounting distances.
Details
Keywords
Hongyu Hou, Feng Wu and Xin Huang
The development of the digital age has made data and information more transparent, enhancing the strategic perspectives of both buyers (strategic waiting) and sellers (price…
Abstract
Purpose
The development of the digital age has made data and information more transparent, enhancing the strategic perspectives of both buyers (strategic waiting) and sellers (price fluctuations) in their decision-making. This research investigates the optimal dynamic pricing strategy of the content product developer in relation to their consideration of consumer fairness concerns to elucidate the impact of consumer fairness concerns on the dynamic pricing strategy of the developer.
Design/methodology/approach
This paper assumes that monopolistic content developers implement a dynamic pricing strategy for the content product. Through constructing a two-period dynamic pricing game model, this research investigates the optimal decisions of the content developer, contingent upon their consideration or disregard of consumer fairness concerns. In the extension section, the authors additionally account for the influence of myopic consumers on these optimal decisions.
Findings
Our findings reveal that the degree of consumer fairness concerns significantly influences the developer’s optimal dynamic pricing decision. When a developer offers content products with lower depth, there is a propensity for the developer to refrain from incorporating consumer fairness concerns into a dynamic pricing strategy. Conversely, in cases where the developer offers a high-depth content product, consumer fairness concerns benefit the developer. Furthermore, our analysis reveals a consistent benefit for the developer from the inclusion of myopic consumers.
Originality/value
Few studies have delved into the conjoined influence of consumer fairness concerns and strategic behavior on dynamic pricing strategy. Our findings indicate that consumer fairness concerns can enhance the efficiency of the value chain for content products under specific conditions. This paper not only enriches the existing literature on dynamic pricing by incorporating consumer fairness concerns theoretically but also offers practical insights. The outcomes of this research can guide content product developers in devising optimal dynamic pricing strategies.
Details