Search results

1 – 4 of 4
Article
Publication date: 10 September 2024

Shi Xu, Hongyu Gao, Fukang Yang, Ziyue Zhang, Shuolei Wang, Xiaojian Jiang and Yubing Dong

The purpose of this study is to improve the mechanical properties, thermal insulation properties and flame retardant properties of polyethylene terephthalate (PET), the organic…

Abstract

Purpose

The purpose of this study is to improve the mechanical properties, thermal insulation properties and flame retardant properties of polyethylene terephthalate (PET), the organic montmorillonite (OMMT)/SiO2 aerogel/PET composites and fibers were prepared, and the effects of the OMMT/SiO2 aerogel on the structure, thermal conductivity and flame retardance of the OMMT/SiO2 aerogel/PET composites and their fibers were systematically investigated.

Design/methodology/approach

The OMMT/SiO2 aerogel/PET composites and fibers were prepared by in-situ polymerization and melt spinning using SiO2 aerogel as thermal insulation filler and OMMT (DK2) as comodified filler.

Findings

The experimental results showed that OMMT improved the crystallization properties of PET. Compared with the crystallinity of SiO2 aerogel/PET composites (34.8%), SiO2 aerogel/PET composites and their fibers reached 45.1% and 49.2%, respectively. The breaking strength of the OMMT/SiO2 aerogel/PET composite fibers were gradually increased with the OMMT content. When the content of OMMT was 0.8 wt.%, the fracture strength of the composite fibers reached 4.40 cN/dtex, which was 54% higher than that of the SiO2 aerogel/PET fiber. In addition, the thermal insulation properties of the composites and their fibers were improved by addition of fillers, and at the same time reached the flame retardant level. The thermal conductivity of the 0.8 wt.% OMMT/SiO2 aerogel/PET composites was 101.78 mW/(m·K), which was 49.3% and 58.8% lower than that of the SiO2 aerogel/PET composites and the pure PET, respectively. The thermal conductivity of the fiber fabrics woven from the 0.8 wt.% OMMT/SiO2 aerogel/PET composites was 28.18 mW/(m·K), which was 29.0% and 44.6% lower than that of the SiO2 aerogel/PET composite fiber fabrics and PET fiber fabrics. The flame retardancy of the composites was improved, with an limiting oxygen index value of 29.2% for the 0.8 wt.% OMMT/SiO2 aerogel/PET composites, which was 4.1% higher compared to the SiO2 aerogel/PET composites, and achieved the flame retardant level.

Research limitations/implications

The SiO2 aerogel/PET composites and their fibers have good mechanical properties, flame retardant properties and thermal insulation properties, exhibited good potential for application in the field of thermal insulation, such as warm clothing. Nowadays, as the energy crisis is becoming more and more serious, it is very important to improve the thermal insulation properties of PET to reduce energy losses and mitigate the energy crisis.

Originality/value

In this study, PET based composites and their fibers with excellent mechanical properties, thermal insulation properties and flame retardant property were obtained by using three-dimensional network porous silica aerogel with low density and low thermal conductivity as the thermal insulation functional filler and two-dimensional layered OMMT as the synergetic modified filler.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 April 2024

Fukang Yang, Wenjun Wang, Yongjie Yan and YuBing Dong

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to…

Abstract

Purpose

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to improve the thermal insulation performance of polyethylene terephthalate (PET), the SiO2 aerogel/PET composites slices and fibers were prepared, and the effects of the SiO2 aerogel on the morphology, structure, crystallization property and thermal conductivity of the SiO2 aerogel/PET composites slices and their fibers were systematically investigated.

Design/methodology/approach

The mass ratio of purified terephthalic acid and ethylene glycol was selected as 1:1.5, which was premixed with Sb2O3 and the corresponding mass of SiO2 aerogel, and SiO2 aerogel/PET composites were prepared by direct esterification and in-situ polymerization. The SiO2 aerogel/PET composite fibers were prepared by melt-spinning method.

Findings

The results showed that the SiO2 aerogel was uniformly dispersed in the PET matrix. The thermal insulation coefficient of PET was significantly reduced by the addition of SiO2 aerogel, and the thermal conductivity of the 1.0 Wt.% SiO2 aerogel/PET composites was reduced by 75.74 mW/(m · K) compared to the pure PET. The thermal conductivity of the 0.8 Wt.% SiO2 aerogel/PET composite fiber was reduced by 46.06% compared to the pure PET fiber. The crystallinity and flame-retardant coefficient of the SiO2 aerogel/PET composite fibers showed an increasing trend with the addition of SiO2 aerogel.

Research limitations/implications

The SiO2 aerogel/PET composite slices and their fibers have good thermal insulation properties and exhibit good potential for application in the field of thermal insulation, such as warm clothes. In today’s society where the energy crisis is becoming increasingly serious, improving the thermal insulation performance of PET to reduce energy loss will be of great significance to alleviate the energy crisis.

Originality/value

In this study, SiO2 aerogel/PET composite slices and their fibers were prepared by an in situ polymerization process, which solved the problem of difficult dispersion of nanoparticles in the matrix and the thermal conductivity of PET significantly reduced.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 October 2024

Hongyu Gao, Shi Xu, Fukang Yang, Ziyue Zhang, Shuolei Wang, Xiaojian Jiang and Yubing Dong

Crystallization kinetics is a key factor that controls the crystallization process of polymers and influences the crystallinity and morphology of polymers. This study aims to…

Abstract

Purpose

Crystallization kinetics is a key factor that controls the crystallization process of polymers and influences the crystallinity and morphology of polymers. This study aims to explore the effects of functional filler SiO2 aerogel and co-modified filler organic montmorillonite (OMMT) on the crystallization process of polyester polyethylene terephthalate (PET). In this study, the nonisothermal crystallization kinetics of OMMT/SiO2 aerogel/PET composites were studied by Jeziorny method.

Design/methodology/approach

The catalyst (Sb2O3), OMMT and SiO2 aerogel were uniformly dispersed in ethylene glycol (EG). Then, the mixture and terephthalic acid (PTA) were put into a semicontinuous polyester synthesis reactor, and the SiO2 aerogel/PET composites were prepared by esterification and polycondensation.

Findings

Non-isothermal kinetic results showed that the high cooling rate hindered the movement of the molecular chain of the composites and made the crystallization peak move toward the low-temperature direction. With the increase of crystallization temperature (Tc), the melt crystallization rate decreases, but the cold crystallization rate increases. The introduction of OMMT and SiO2 aerogel condensation affected the nucleation and growth mode of crystals, lengthened the time with a relative crystallinity of 50% (t1/2) and decreased the crystallization rate. OMMT improved the crystallinity and Avrami index of the composites.

Research limitations/implications

Effects of thermal insulation functional filler SiO2 aerogel and co-modified filler OMMT on the crystallization process of PET were studied by non-isothermal crystallization kinetics, and the effects of SiO2 aerogel and OMMT on the nucleation mechanism of PET were clarified, which provided a theoretical reference for the preparation and performance optimization of PET matrix composites.

Originality/value

In this study, the OMMT/SiO2 aerogel/PET composites were prepared by in-situ polymerization, the crystallinity of PET matrix composites was improved, and the effects of OMMT and SiO2 aerogel on the crystallization process of PET were clarified.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 June 2023

Fan Chao, Xin Wang and Guang Yu

Sharing and disseminating debunking information are critical to correcting rumours and controlling disease when dealing with public health crises. This study investigates the…

Abstract

Purpose

Sharing and disseminating debunking information are critical to correcting rumours and controlling disease when dealing with public health crises. This study investigates the factors that influence social media users' debunking information sharing behaviour from the perspective of persuasion. The authors examined the effects of argument adequacy, emotional polarity, and debunker's identity on debunking information sharing behaviour and investigated the moderating effects of rumour content and target.

Design/methodology/approach

The model was tested using 150 COVID-19-related rumours and 2,349 original debunking posts on Sina Weibo.

Findings

First, debunking information that contains adequate arguments is more likely to be reposted only when the uncertainty of the rumour content is high. Second, using neutral sentiment as a reference, debunking information containing negative sentiment is shared more often regardless of whether the government is the rumour target, and information containing positive sentiment is more likely to be shared only when the rumour target is the government. Finally, debunking information published by government-type accounts is reposted more often and is enhanced when the rumour target is the government.

Originality/value

The study provides a systematic framework for analysing the behaviour of sharing debunking information among social media users. Specifically, it expands the understanding of the factors that influence debunking information sharing behaviour by examining the effects of persuasive cues on debunking information sharing behaviour and the heterogeneity of these effects across various rumour contexts.

Details

Internet Research, vol. 34 no. 5
Type: Research Article
ISSN: 1066-2243

Keywords

1 – 4 of 4