Noel Scott, Brent Moyle, Ana Cláudia Campos, Liubov Skavronskaya and Biqiang Liu
Abstract
Purpose
How does business model design play a role in enabling manufacturing firms’ services? This study aims to investigate the impact of two distinct types of business model design, namely, efficiency-centered business model design (EBMD) and novelty-centered business model design (NBMD), and their effects in balanced and imbalanced configurations, on two types of services: product- and customer-oriented services.
Design/methodology/approach
Using matched survey data of 390 top managers and objective performance data of 195 Chinese manufacturing firms, this study uses hierarchical regression, polynomial regression and response surface analysis to test the hypotheses.
Findings
The results show that while EBMD positively affects product-oriented services, NBMD positively affects customer-oriented services. Both types of services exert a significant influence on firm performance. Furthermore, the degree of product- and customer-oriented services increases with an increasing effort level with a balance between EBMD and NBMD. Asymmetrical, imbalanced configuration effects reveal that the degree of product-oriented services is higher when the EBMD effort exceeds the NBMD effort, and the degree of customer-oriented services is higher when the NBMD effort exceeds the EBMD effort.
Originality/value
This study enriches the understanding of designing business models to facilitate service growth in manufacturing firms, ultimately benefiting firm performance. In addition, exploring balanced and imbalanced configurations of EBMD and NBMD offers new insights into business model dual design research.
Details
Keywords
Vasilii Erokhin and Tianming Gao
Sustainable development is inseparable from rational and responsible use of resources and promotion of green entrepreneurship. The contemporary green development agenda…
Abstract
Sustainable development is inseparable from rational and responsible use of resources and promotion of green entrepreneurship. The contemporary green development agenda encompasses climate, economic, technical, social, cultural, and political dimensions. International efforts to greening the global development are conducted by the major economies, including China as the world’s largest consumer of energy and the biggest emitter of greenhouse gases. China is aware of its environmental problems, as well as of its part of the overall responsibility for the accomplishment of the sustainable development goals. By means of the decarbonization efforts, the latter are integrated both into the national development agenda (the concept of ecological civilization) and China’s international initiatives (the greening narrative within the Belt and Road Initiative). Over the past decade, China has made a breakthrough on the way to promoting green entrepreneurship and greening of its development (better quality of air and water, renewable energy, electric vehicles, and organic farming). On the other hand, emissions remain high, agricultural land loses productivity, and freshwater resources degrade due to climate change. In conventional industries (oil, coal mining, and electric and thermal energy), decarbonization faces an array of impediments. In this chapter, the authors summarize fundamental provisions of China’s approach to building an ecological civilization and measures to reduce emissions and achieve the carbon neutrality status within the nearest decades. The analysis of obstacles to the decarbonization of the economy and possible prospects for the development of green entrepreneurship summarizes China’s practices for possible use in other countries.
Details
Keywords
Xinhai Chen, Zhichao Wang, Yang Liu, Yufei Pang, Bo Chen, Jianqiang Chen, Chunye Gong and Jie Liu
The quality of the unstructured mesh has a considerable impact on the stability and accuracy of aerodynamic simulation in computational fluid dynamics (CFD). Typically, engineers…
Abstract
Purpose
The quality of the unstructured mesh has a considerable impact on the stability and accuracy of aerodynamic simulation in computational fluid dynamics (CFD). Typically, engineers spend a significant portion of their time on mesh quality evaluation to ensure a valid, high-quality mesh. The extensive manual interaction and a priori knowledge required to undertake an accurate and timely evaluation process have become a bottleneck in the idealized efficient CFD workflow. This paper aims to introduce a neural network-based quality evaluation approach for unstructured meshes to enable higher efficiency and the level of automation.
Design/methodology/approach
The paper investigates the capability of deep neural networks for the quality evaluation of unstructured meshes. For training the network, we build a training dataset for mesh quality learning algorithms. The dataset contains a rich variety of unstructured aircraft meshes with different mesh sizes, densities, cell distribution, growth ratios and cell numbers to ensure its diversity and availability. We also design a neural network, AircraftNet, to learn the effect of mesh quality on the convergent properties of the numerical solutions. The proposed network directly manipulates raw point data in mesh source files rather than passing it to an intermediate data representation. During training, AircraftNet extracts non-linear quality features from high-dimensional data spaces and then automatically predicts the overall quality of the input unstructured mesh.
Findings
The paper provides a series of experimental results on GPUs. It shows that AircraftNet is able to effectively analyze the quality-related features like mesh density and distribution from the extracted features and achieve high prediction accuracy on the proposed dataset with even a small number of training runs.
Research limitations/implications
Because of the limited training dataset, the research results may lack generalizability. Therefore, researchers are encouraged to test the proposed propositions further.
Originality/value
The paper publishes a benchmarking dataset for mesh quality learning algorithms and designs a novel neural network approach for unstructured mesh quality evaluation.
Details
Keywords
In smart cities striving for innovation, development, and prosperity, hydrogen offers a promising path for decarbonization. However, its effective integration into the evolving…
Abstract
In smart cities striving for innovation, development, and prosperity, hydrogen offers a promising path for decarbonization. However, its effective integration into the evolving energy landscape requires understanding regional intricacies and identifying areas for improvement. This chapter examines hydrogen transport from production to utilization, evaluating technologies’ pros, cons, and process equations and using Analytic Hierarchy Process (AHP) as a Multi-Criteria Decision-Making (MCDM) tool to assess these technologies based on multiple criteria. It also explores barriers and opportunities in hydrogen transport within the 21st-century energy transition, providing insights for overcoming challenges. Evaluation criteria for hydrogen transport technologies were ranked by relative importance, with energy efficiency topping the list, followed by energy density, infrastructure requirements, cost, range, and flexibility. Safety, technological maturity, scalability, and compatibility with existing infrastructure received lower weights. Hydrogen transport technologies were categorized into three performance levels: low, medium, and high. Hydrogen tube trailers ranked lowest, while chemical hydrides, hydrail, liquid organic hydrogen carriers, hydrogen pipelines, and hydrogen blending exhibited moderate performance. Compressed hydrogen gas, liquid hydrogen, ammonia carriers, and hydrogen fueling stations demonstrated the highest performance. The proposed framework is crucial for next-gen smart cities, cutting emissions, boosting growth, and speeding up development with a strong hydrogen infrastructure. This makes the region a sustainable tech leader, improving air quality and well-being. Aligned with Gulf Region goals, it is key for smart cities. Policymakers, industries, and researchers can use these insights to overcome barriers and seize hydrogen transport tech opportunities.
Details
Keywords
Jiahao Zhang and Yu Wei
This study conducts a comparative analysis of the diversification effects of China's national carbon market (CEA) and the EU ETS Phase IV (EUA) within major commodity markets.
Abstract
Purpose
This study conducts a comparative analysis of the diversification effects of China's national carbon market (CEA) and the EU ETS Phase IV (EUA) within major commodity markets.
Design/methodology/approach
The study employs the TVP-VAR extension of the spillover index framework to scrutinize the information spillovers among the energy, agriculture, metal, and carbon markets. Subsequently, the study explores practical applications of these findings, emphasizing how investors can harness insights from information spillovers to refine their investment strategies.
Findings
First, the CEA provide ample opportunities for portfolio diversification between the energy, agriculture, and metal markets, a desirable feature that the EUA does not possess. Second, a portfolio comprising exclusively energy and carbon assets often exhibits the highest Sharpe ratio. Nevertheless, the inclusion of agricultural and metal commodities in a carbon-oriented portfolio may potentially compromise its performance. Finally, our results underscore the pronounced advantage of minimum spillover portfolios; particularly those that designed minimize net pairwise volatility spillover, in the context of China's national carbon market.
Originality/value
This study addresses the previously unexplored intersection of information spillovers and portfolio diversification in major commodity markets, with an emphasis on the role of CEA.
Details
Keywords
Yuhuan Xia, Mingzhe Gai, Changlin Han, Xiyao Liu, Zhen Liu and Lei Xu
This study aims to explore the cross-level effect of the top management team (TMT) on group ambidextrous innovation and to analyze the mediating role of group behavioral…
Abstract
Purpose
This study aims to explore the cross-level effect of the top management team (TMT) on group ambidextrous innovation and to analyze the mediating role of group behavioral integration and the moderating effect of group expertise heterogeneity.
Design/methodology/approach
We conducted a multi-source and multi-stage survey. We collected valid data from 43 companies in China, resulting in 141 samples from 43 TMTs and 462 valid responses from 111 organizational groups. The proposed theoretical model and hypotheses were tested using structural equation modeling.
Findings
The study findings demonstrated that TMT behavioral integration was positively related to group behavioral integration. Group behavioral integration mediates the relationship between TMT behavioral integration and these two types of innovations. Furthermore, we found that group expertise heterogeneity magnified the positive effect of group behavioral integration on exploratory innovation.
Originality/value
This study reveals the cross-level effects of TMT behavioral integration on other organizational groups and enriches the existing literature on TMT behavioral integration and ambidextrous innovation.
Details
Keywords
Su Chen, Xinyu Tan, Wenbin Shen, Rongzhi Liu and Yangui Chen
This paper examines the pre-factors of college students’ entrepreneurial behaviors and how their background characteristics affect corporate financial performance in high-tech…
Abstract
Purpose
This paper examines the pre-factors of college students’ entrepreneurial behaviors and how their background characteristics affect corporate financial performance in high-tech businesses.
Design/methodology/approach
About 67 high-tech businesses in China focusing on technical innovation from the Guotai’an database are selected to carry out empirical analysis.
Findings
It is observed that the age, educational and professional backgrounds of college entrepreneurs profoundly influence their ventures geared toward high-tech innovation. Moreover, the transformation abilities, managerial proficiency and growth capabilities, which characterize these ventures, notably affect business performance. They further serve as a moderator in the relationship between the entrepreneurial backgrounds of college students and the overall business performance of their enterprises.
Originality/value
It insinuates novel strategic avenues for collegiate entrepreneurs’ entrepreneurial mindset and industrial positioning. Moreover, our findings will not only augment the practical research in the realm of collegiate entrepreneurship but also enhance the study of technological innovation theories, thereby offering further insight and guidance for collegiate entrepreneurs’ innovative endeavors and entrepreneurial pursuits.
Details
Keywords
Jie Chen, Guanming Zhu, Yindong Zhang, Zhuangzhuang Chen, Qiang Huang and Jianqiang Li
Thin cracks on the surface, such as those found in nuclear power plant concrete structures, are difficult to identify because they tend to be thin. This paper aims to design a…
Abstract
Purpose
Thin cracks on the surface, such as those found in nuclear power plant concrete structures, are difficult to identify because they tend to be thin. This paper aims to design a novel segmentation network, called U-shaped contextual aggregation network (UCAN), for better recognition of weak cracks.
Design/methodology/approach
UCAN uses dilated convolutional layers with exponentially changing dilation rates to extract additional contextual features of thin cracks while preserving resolution. Furthermore, this paper has developed a topology-based loss function, called ℓcl Dice, which enhances the crack segmentation’s connectivity.
Findings
This paper generated five data sets with varying crack widths to evaluate the performance of multiple algorithms. The results show that the UCAN network proposed in this study achieves the highest F1-Score on thinner cracks. Additionally, training the UCAN network with the ℓcl Dice improves the F1-Scores compared to using the cross-entropy function alone. These findings demonstrate the effectiveness of the UCAN network and the value of incorporating the ℓcl Dice in crack segmentation tasks.
Originality/value
In this paper, an exponentially dilated convolutional layer is constructed to replace the commonly used pooling layer to improve the model receptive field. To address the challenge of preserving fracture connectivity segmentation, this paper introduces ℓcl Dice. This design enables UCAN to extract more contextual features while maintaining resolution, thus improving the crack segmentation performance. The proposed method is evaluated using extensive experiments where the results demonstrate the effectiveness of the algorithm.
Details
Keywords
Xia Liu, Yuli Wang, Shanshan Li, Lei Chen, Fanbo Li and Hongfeng Zhang
The objective of this study is to utilize empirical research and analysis to examine the coupling coordination relationship between new quality productivity and higher vocational…
Abstract
Purpose
The objective of this study is to utilize empirical research and analysis to examine the coupling coordination relationship between new quality productivity and higher vocational education sustainable development.
Design/methodology/approach
To this end, an evaluation index system for the new quality productivity and higher vocational education sustainable development was constructed. The panel data of 30 Chinese provinces from 2016 to 2022 were then analyzed using the entropy method, the coupling coordination degree model, the Tobit regression model and Dagum’s Gini coefficient.
Findings
The findings indicate that the coupling coordination degree of new quality productivity and higher vocational education sustainable development exhibited an upward trend, though significant regional disparities were observed, with the highest coupling coordination degree recorded in the eastern region and the lowest in the northeastern region.
Originality/value
The study’s findings further suggest that the three factors of technological innovation level, rationalization of industrial structure and advanced industrial structure have a significant positive influence on the coupling coordination degree, while the level of government intervention has a significant negative influence on the Coupling Coordination Degree. The study posits that augmenting policy support, optimizing the government’s role, reinforcing the drive for technological innovation, and enhancing regional cooperation and exchange are imperative to foster high-quality development of the integration of industry and education between new quality productivity and higher vocational education.