Search results
1 – 2 of 2Mahendra Gooroochurn and Riaan Stopforth
Industry 4.0 has been identified as a key cornerstone to modernise economies where man and machines complement each other seamlessly to achieve synergies in decision-making and…
Abstract
Industry 4.0 has been identified as a key cornerstone to modernise economies where man and machines complement each other seamlessly to achieve synergies in decision-making and productivity for contributing to SDG 8: Decent Work and Economic Growth and SDG 9: Industry, Innovation and Infrastructure. The integration of Industry 4.0 remains a challenge for the developing world, depending on their current status in the industrial revolution journey from its predecessors 1.0, 2.0 and 3.0. This chapter reviews reported findings in literature to highlight how robotics and automated systems can pave the way to implementing and applying the principles of Industry 4.0 for developing countries like Mauritius, where data collection, processing and analysis for decision-making and prediction are key components to be integrated or designed into industrial processes centred heavily on the use of artificial intelligence (AI) and machine learning techniques. Robotics has not yet found its way into the various industrial sectors in Mauritius, although it has been an important driver for Industry 4.0 across the world. The inherent barriers and transformations needed as well as the potential application scenarios are discussed.
Details
Keywords
Chenyang Sun and Mohammad Khishe
The purpose of the study is to address concerns regarding the subjectivity and imprecision of decision-making in table tennis refereeing by developing and enhancing a sensor node…
Abstract
Purpose
The purpose of the study is to address concerns regarding the subjectivity and imprecision of decision-making in table tennis refereeing by developing and enhancing a sensor node system. This system is designed to accurately detect the points on the table tennis table where balls collide. The study introduces the twined-reinforcement chimp optimization (TRCO) framework, which combines two novel approaches to optimize the distribution of sensor nodes. The main goal is to reduce the number of sensor units required while maintaining high accuracy in determining the locations of ball collisions, with error margins significantly below the critical 3.5 mm cutoff. Through complex optimization procedures, the study aims to improve the efficiency and reliability of decision-making in table tennis refereeing by leveraging sensor technology.
Design/methodology/approach
The study employs a design methodology focused on developing a sensor array system to enhance decision-making in table tennis refereeing. It introduces the twined-reinforcement chimp optimization (TRCO) framework, combining dual adaptive weighting strategies and a stochastic approach for optimization. By meticulously engineering the sensor array and utilizing complex optimization procedures, the study aims to improve the accuracy of detecting ball collisions on the table tennis table. The methodology aims to reduce the number of sensor units required while maintaining high precision, ultimately enhancing the reliability of decision-making in the sport.
Findings
The optimization research study yielded promising outcomes, showcasing a substantial reduction in the number of sensor units required from the initial count of 60 to a more practical 49. The sensor array system demonstrated excellent accuracy in identifying the locations of ball collisions, with error margins significantly below the critical 3.5 mm cutoff. Through the implementation of the twined-reinforcement chimp optimization (TRCO) framework, which integrates dual adaptive weighting strategies and a stochastic approach, the study achieved its goal of enhancing the efficiency and reliability of decision-making in table tennis refereeing.
Originality/value
This study introduces novel contributions to the field of table tennis refereeing by pioneering the development and optimization of a sensor array system. The innovative twined-reinforcement chimp optimization (TRCO) framework, integrating dual adaptive weighting strategies and a stochastic approach, sets a new standard for sensor node distribution in sports technology. By substantially reducing the number of sensor units required while maintaining high accuracy in detecting ball collisions, this research offers practical solutions to address the inherent subjectivity and imprecision in decision-making processes. The study’s originality lies in its meticulous design methodology and complex optimization procedures, offering significant value to the field of sports technology and officiating.
Details