Search results
1 – 3 of 3Jundong Yin, Baoyin Zhu, Runhua Song, Chenfeng Li and Dongfeng Li
A physically-based elasto-viscoplastic constitutive model is proposed to examine the size effects of the precipitate and blocks on the creep for martensitic heat-resistant steels…
Abstract
Purpose
A physically-based elasto-viscoplastic constitutive model is proposed to examine the size effects of the precipitate and blocks on the creep for martensitic heat-resistant steels with both the dislocation creep and diffusional creep mechanisms considered.
Design/methodology/approach
The model relies upon the initial dislocation density and the sizes of M23C6 carbide and MX carbonitride, through the use of internal variable based governing equations to address the dislocation density evolution and precipitate coarsening processes. Most parameters of the model can be obtained from existing literature, while a small subset requires calibration. Based on the least-squares fitting method, the calibration is successfully done by comparing the modeling and experimental results of the steady state creep rate at 600° C across a wide range of applied stresses.
Findings
The model predictions of the creep responses at various stresses and temperatures, the carbide coarsening and the dislocation density evolution are consistent with the experimental data in literature. The modeling results indicate that considerable effect of the sizes of precipitates occurs only during the creep at relatively high stress levels where dislocation creep dominates, while the martensite block size effect happens during creep at relatively low stress levels where diffusion creep dominates. The size effect of M23C6 carbide on the steady creep rate is more significant than that of MX precipitate.
Originality/value
The present study also reveals that the two creep mechanisms compete such that at a given temperature the contribution of the diffusion creep mechanism decreases with increasing stress, while the contribution of the dislocation creep mechanism increases.
Details
Keywords
Jingxuan Chai, Jie Mei, Youmin Gong, Weiren Wu, Guangfu Ma and Guoming Zhao
Asteroids have the characteristics of noncooperative, irregular gravity and complex terrain on the surface, which cause difficulties in successful landing for conventional…
Abstract
Purpose
Asteroids have the characteristics of noncooperative, irregular gravity and complex terrain on the surface, which cause difficulties in successful landing for conventional landers. The purpose of this paper is to study the trajectory tracking problem of a multi-node flexible lander with unknown flexible coefficient and space disturbance.
Design/methodology/approach
To facilitate the stability analysis, this paper constructs a simplified dynamic model of the multi-node flexible lander. By introducing the nonlinear transformation, a concurrent learning-based adaptive trajectory tracking guidance law is designed to ensure tracking performance, which uses both real-time information and historical data to estimate the parameters without persistent excitation (PE) conditions. A data selection algorithm is developed to enhance the richness of historical data, which can improve the convergence rate of the parameter estimation and the guidance performance.
Findings
Finally, Lyapunov stability theory is used to prove that the unknown parameters can converge to their actual value and, meanwhile, the closed-loop system is stable. The effectiveness of the proposed algorithm is further verified through simulations.
Originality/value
This paper provides a new design idea for future asteroid landers, and a trajectory tracking controller based on concurrent learning and preset performance is first proposed.
Details
Keywords
Lots of successful space missions require that the maneuvering spacecraft can reach the target spacecraft. Therefore, research on relative reachable domain (RRD) in target orbit…
Abstract
Purpose
Lots of successful space missions require that the maneuvering spacecraft can reach the target spacecraft. Therefore, research on relative reachable domain (RRD) in target orbit for maneuvering spacecraft is particularly important and is currently a hot-debated topic in the field of aerospace. This paper aims at analyzing and simulating the RRD in target orbit for maneuvering spacecrafts with a single fixed-magnitude impulse and continuous thrust, respectively, to provide a basis for analyzing the feasibility of spacecraft maneuvering missions and improving the design efficiency of spacecraft maneuvering missions.
Design/methodology/approach
Based on the kinematics model of relative motion, RRD in target orbit for maneuvering spacecraft with a single fixed-magnitude impulse can be calculated via analyzing the relationship between orbital elements, position vector and velocity vector of spacecrafts, and relevant studies are introduced to compare simulation results for the same case and validate the method proposed in the paper. With analysis of the dynamic model of relative motion, the calculation of RRD in target orbit for maneuvering spacecraft with continuous thrust can be transformed as the solution of the optimal control problem, and example emulations are carried out to validate the method.
Findings
For the case with a single fixed-magnitude impulse, simulation results show preliminarily that the method is in agreement with the method in Ref. (Wen et al., 2016), which treats the same case and thus is plausibly correct and feasible. For the case with continuous thrust, analysis and simulation results confirm the validity of the proposed method. The methods based on relative motion in this paper can efficiently determining the RRD in target orbit for maneuvering spacecraft.
Originality/value
Both theoretical analyses and simulation results indicate that the method proposed in this paper is comparatively simple but efficient for determine the RRD in target orbit for maneuvering spacecraft swiftly and precisely.
Details