Search results

1 – 2 of 2
Article
Publication date: 6 June 2024

Justin C Emereole, Chigoziri N Njoku, Alexander I Ikeuba, Ifenyinwa C Ekeke, Emmanuel Yakubu, Ogbonna C Nkuzinna, Nnamdi A Nnodum and Madueke S Nwakaudu

This study aims to develop eco-friendly corrosion inhibitors for aluminum in acidic media by evaluating the corrosion inhibition properties of corn leaf extract (CLE) using…

Abstract

Purpose

This study aims to develop eco-friendly corrosion inhibitors for aluminum in acidic media by evaluating the corrosion inhibition properties of corn leaf extract (CLE) using response surface methodology (RSM) and experiments.

Design/methodology/approach

The RSM was combined with experiments to evaluate the corrosion inhibition properties of CLE on aluminum in acid media.

Findings

The effectiveness of the inhibition increased with increasing inhibitor concentration and time but decreased with increasing temperature. The corrosion inhibition mechanism revealed the corrosion process is spontaneous exothermic physical adsorption. Thermodynamic parameters revealed an activation energy between 32.1 and 24.7 kJ/mol, energy of adsorption between −14.53 and −65.07 and Gibbs free energy of −10.12 kJ/mol which indicated the CLE exothermically spontaneously physisorbed. A model was generated to estimate the effect of the process parameters (inhibitor concentration, reaction time and temperature) using the RSM. Optimization of the process factors was also carried out using the RSM. The percentage inhibition efficiency obtained experimentally (85.61%) was closely comparable to 84.89% obtained by the theoretical technique (RSM). The SEM observations of the inhibited and uninhibited Al samples demonstrated that CLE is an effective corrosion inhibitor for aluminum in acid media.

Originality/value

Results herein provide novel information on the possible application of CLEs as effective eco-friendly corrosion inhibitors.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 April 2024

Liang Ma, Qiang Wang, Haini Yang, Da Quan Zhang and Wei Wu

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the…

Abstract

Purpose

The aim of this paper is to solve the toxic and harmful problems caused by traditional volatile corrosion inhibitor (VCI) and to analyze the effect of the layered structure on the enhancement of the volatile corrosion inhibition prevention performance of amino acids.

Design/methodology/approach

The carbon dots-montmorillonite (DMT) hybrid material is prepared via hydrothermal process. The effect of the DMT-modified alanine as VCI for mild steel is investigated by volatile inhibition sieve test, volatile corrosion inhibition ability test, electrochemical measurement and surface analysis technology. It demonstrates that the DMT hybrid materials can improve the ability of alanine to protect mild steel against atmospheric corrosion effectively. The presence of carbon dots enlarges the interlamellar spacing of montmorillonite and allows better dispersion of alanine. The DMT-modified alanine has higher volatilization ability and an excellent corrosion inhibition of 85.3% for mild steel.

Findings

The DMT hybrid material provides a good template for the distribution of VCI, which can effectively improve the vapor-phase antirust property of VCI.

Research limitations/implications

The increased volatilization rate also means increased VCI consumption and higher costs.

Practical implications

Provides a new way of thinking to replace the traditional toxic and harmful VCI.

Originality/value

For the first time, amino acids are combined with nano laminar structures, which are used to solve the problem of difficult volatilization of amino acids.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Access

Year

Last 12 months (2)

Content type

1 – 2 of 2