Search results
1 – 4 of 4Rizk Mostafa Shalaby and Mohamed Saad
The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free…
Abstract
Purpose
The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free solder for high-temperature applications.
Design/methodology/approach
Effect of rapid solidification processing on structural, thermal and mechanical properties of Bi-Ag lead-free solder reinforced Tb rare-earth element.
Findings
The obtained results indicated that the microstructure consists of rhombohedral Bi-rich phase and Ag99.5Bi0.5 intermetallic compound (IMC). The addition of Tb could effectively reduce the onset and melting point. The elastic modulus of Tb-containing solders was enhanced to about 90% at 0.5 Tb. The higher elastic modulus may be attributed to solid solution strengthening effect, solubility extension, microstructure refinement and precipitation hardening of uniform distribution Ag99.5Bi0.5 IMC particles which can reasonably modify the microstructure, as well as inhibit the segregation and hinder the motion of dislocations.
Originality/value
It is recommended that the lead-free Bi-0.5Ag-0.5Tb solder be a candidate instead of common solder alloy (Sn-37Pb) for high temperature and high performance applications.
Details
Keywords
Sally Elkatatny, Lamiaa Zaky, Walaa Abdelaziem and Aliaa Abdelfatah
This study aims to investigate the corrosion behavior of cold-rolled Fe35Ni20Cr12Mn(28-x)Alx high-entropy alloys (HEAs) using the potentiodynamic polarization technique in 1 M H2SO…
Abstract
Purpose
This study aims to investigate the corrosion behavior of cold-rolled Fe35Ni20Cr12Mn(28-x)Alx high-entropy alloys (HEAs) using the potentiodynamic polarization technique in 1 M H2SO4 acid. Additionally, the influence of molybdenum (Mo) additions as inhibitors and the effect of variations in cold rolling reduction ratios and Al content on corrosion behavior are examined.
Design/methodology/approach
Two cold rolling reduction ratios, namely, 50% (R50) and 90% (R90), were examined for the cold-rolled Fe35Ni20Cr12Mn28Al5 (Al5) and Fe35Ni20Cr12Mn23Al10 (Al10) HEAs. Mo inhibitor additions were introduced at varying concentrations of 0.3, 0.6 and 0.9 Wt.%. The potentiodynamic polarization technique was used to evaluate the corrosion rates (CRs) under different experimental conditions.
Findings
The results indicate that the addition of 0.3 Wt.% Mo in 1 M H2SO4 yielded the lowest CR for both R50 and R90, irrespective of the Al content in the HEAs. However, the highest CR was observed at 0.6 Wt.% Mo addition. Furthermore, increasing the concentration of Al resulted in a corresponding rise in the CR. Comparatively, the CR decreased significantly when the cold rolling reduction ratio increased from R50 to R90.
Originality/value
This research provides valuable insights into the intricate relationship between Mo inhibitors, cold rolling reduction ratio, Al content and the resulting corrosion behavior of Fe35Ni20Cr12Mn(28-x)Alx HEAs. The comprehensive analysis of corroded HEAs, including surface morphology, compositions and elemental distribution mapping, contributes to the understanding of the corrosion mechanisms and offers potential strategies for enhancing the corrosion behavior of HEAs.
Details
Keywords
Margarida Rodrigues, Rui Silva, Ana Pinto Borges, Mário Franco and Cidália Oliveira
This study aims to address a systematic literature review (SLR) using bibliometrics on the relationship between academic integrity and artificial intelligence (AI), to bridge the…
Abstract
Purpose
This study aims to address a systematic literature review (SLR) using bibliometrics on the relationship between academic integrity and artificial intelligence (AI), to bridge the scattering of literature on this topic, given the challenge and opportunity for the educational and academic community.
Design/methodology/approach
This review highlights the enormous social influence of COVID-19 by mapping the extensive yet distinct and fragmented literature in AI and academic integrity fields. Based on 163 publications from the Web of Science, this paper offers a framework summarising the balance between AI and academic integrity.
Findings
With the rapid advancement of technology, AI tools have exponentially developed that threaten to destroy students' academic integrity in higher education. Despite this significant interest, there is a dearth of academic literature on how AI can help in academic integrity. Therefore, this paper distinguishes two significant thematical patterns: academic integrity and negative predictors of academic integrity.
Practical implications
This study also presents several contributions by showing that tools associated with AI can act as detectors of students who plagiarise. That is, they can be useful in identifying students with fraudulent behaviour. Therefore, it will require a combined effort of public, private academic and educational institutions and the society with affordable policies.
Originality/value
This study proposes a new, innovative framework summarising the balance between AI and academic integrity.
Details
Keywords
Shivendra Singh Rathore and Chakradhara Rao Meesala
The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on…
Abstract
Purpose
The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on properties of low calcium fly ash (FA)-based geopolymer concrete (GPC) cured at oven temperature. Further, this paper aims to study the effect of partial replacement of FA by ground granulated blast slag (GGBS) in GPC made with both NCA and RCA cured under ambient temperature curing.
Design/methodology/approach
M25 grade of ordinary Portland cement (OPC) concrete was designed according to IS: 10262-2019 with 100% NCA as control concrete. Since no standard guidelines are available in the literature for GPC, the same mix proportion was adopted for the GPC by replacing the OPC with 100% FA and W/C ratio by alkalinity/binder ratio. All FA-based GPC mixes were prepared with 12 M of sodium hydroxide (NaOH) and an alkalinity ratio, i.e. sodium hydroxide to sodium silicate (NaOH:Na2SiO3) of 1:1.5, subjected to 90°C temperature for 48 h of curing. The NCA were replaced with 50% and 100% RCA in both OPC and GPC mixes. Further, FA was partially replaced with 15% GGBS in GPC made with the above percentages of NCA and RCA, and they were given ambient temperature curing with the same molarity of NaOH and alkalinity ratio.
Findings
The workability, compressive strength, split tensile strength, flexural strength, water absorption, density, volume of voids and rebound hammer value of all the mixes were studied. Further, the relationship between compressive strength and other mechanical properties of GPC mixes were established and compared with the well-established relationships available for conventional concrete. From the experimental results, it is found that the compressive strength of GPC under ambient curing condition at 28 days with 100% NCA, 50% RCA and 100% RCA were, respectively, 14.8%, 12.85% and 17.76% higher than those of OPC concrete. Further, it is found that 85% FA and 15% GGBS-based GPC with RCA under ambient curing shown superior performance than OPC concrete and FA-based GPC cured under oven curing.
Research limitations/implications
The scope of the present paper is limited to replace the FA by 15% GGBS. Further, only 50% and 100% RCA are used in place of natural aggregate. However, in future study, the replacement of FA by different amounts of GGBS (20%, 25%, 30% and 35%) may be tried to decide the optimum utilisation of GGBS so that the applications of GPC can be widely used in cast in situ applications, i.e. under ambient curing condition. Further, in the present study, the natural aggregate is replaced with only 50% and 100% RCA in GPC. However, further investigations may be carried out by considering different percentages between 50 and 100 with the optimum compositions of FA and GGBS to enhance the use of RCA in GPC applications. The present study is further limited to only the mechanical properties and a few other properties of GPC. For wider use of GPC under ambient curing conditions, the structural performance of GPC needs to be understood. Therefore, the structural performance of GPC subjected to different loadings under ambient curing with RCA to be investigated in future study.
Originality/value
The replacement percentage of natural aggregate by RCA may be further enhanced to 50% in GPC under ambient curing condition without compromising on the mechanical properties of concrete. This may be a good alternative for OPC and natural aggregate to reduce pollution and leads sustainability in the construction.
Details